

PDF constraints and α_s from CMS

P. Kokkas

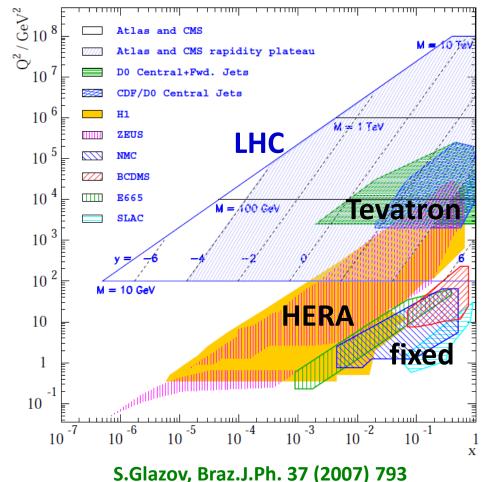
University of Ioannina, Greece

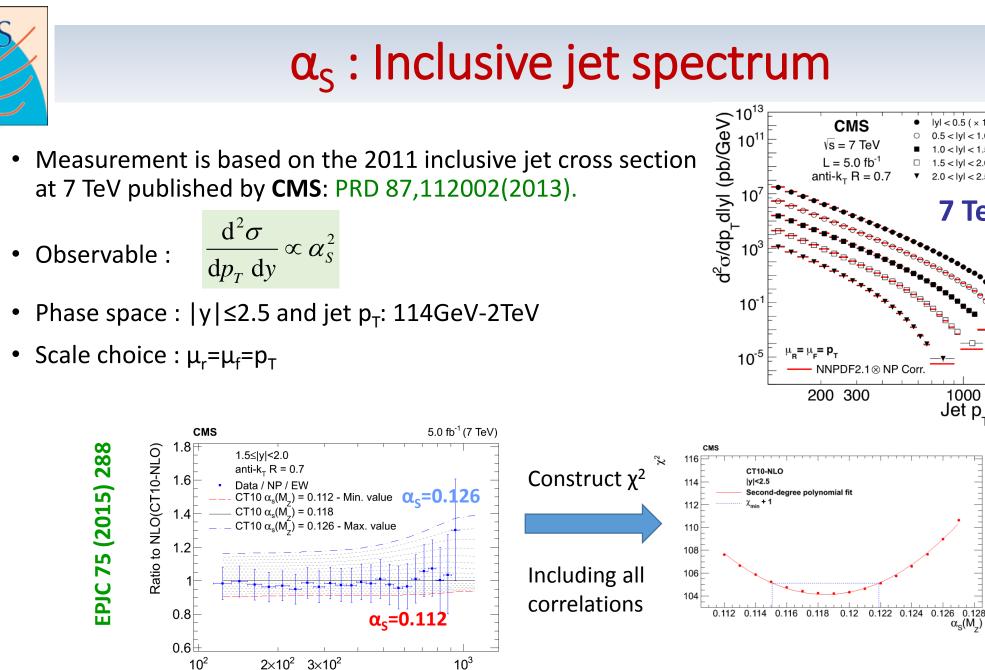
On behalf of the CMS Collaboration

EPS-HEP 2015: European Physical Society on High Energy Physics 22-29 July 2015, Vienna (Austria)

Program THALIS : "Search for new physics with the ATLAS and CMS experiments at the LHC: NewPhysAtLHC"

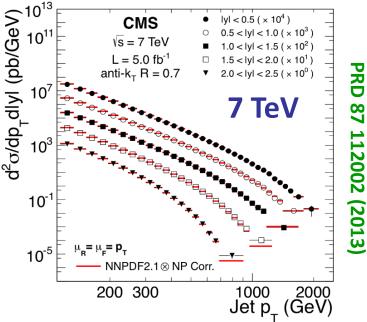
Co-funded by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF).


Co-financed by Greece and the Euro



Introduction

- The Strong Coupling Constant (α_s) and the Parton Distribution Functions (PDFs) are a key ingredient for precision measurements at hadron colliders.
- With the LHC data the determination of α_s is possible at energies beyond 1 TeV.
- Up to LHC RUN I, PDFs mainly constrained by the Deep Inelastic Scattering (DIS) and Fixed Target measurements.
- The LHC measurements started already to provide additional information on PDFs in a previously unexplored energy region.


Kinematic plane of process Q² vs x

 10^{3} Jet p₋ (GeV)

10²

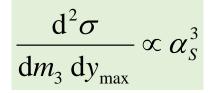
 $\alpha_{s}(M_{z})$

α_{S} : Inclusive jet spectrum

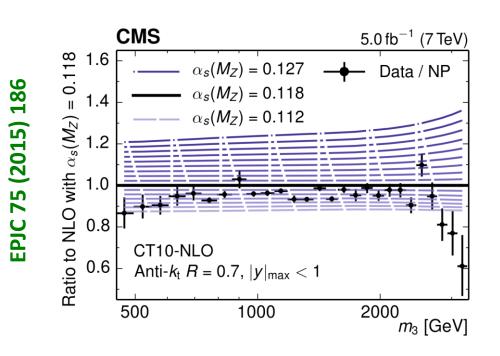
- Central fit : all rapidity bins with CT10-NLO.
- Determination at NLO

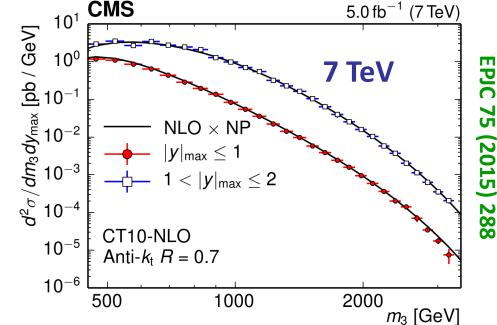
 $\alpha_{s}(M_{Z}) = 0.1185 \pm 0.0019(\exp) \pm 0.0028(PDF) \pm 0.0004(NP) \pm {}^{0.0055}_{0.0022} (scale)$ = 0.1185 ± ${}^{0.0060}_{0.0037}$

- Results using MSTW2018 and NNPDF2.1 are in agreement with central CT10 result
- Total uncertainty 3.5 to 5.5 %.
- Dominated by missing-order terms (μ_r , μ_f)


Ø	p _T range (GeV)	Q (GeV)	$\alpha_S(M_Z)$	$\alpha_S(Q)$	No. of data points	$\chi^2/n_{\rm dof}$
288	114-196	136	$0.1172 {}^{+0.0058}_{-0.0043}$	$0.1106 {}^{+0.0052}_{-0.0038}$	20	6.2/19
15)	196-300	226	$0.1180 {}^{+0.0063}_{-0.0046}$	$0.1038 {}^{+0.0048}_{-0.0035}$	20	7.6/19
(2015)	300-468	345	$0.1194 {}^{+0.0064}_{-0.0049}$	$0.0993 {}^{+0.0044}_{-0.0034}$	25	8.1/24
75 (468-638	521	$0.1187 {}^{+0.0067}_{-0.0051}$	$0.0940 {}^{+0.0041}_{-0.0032}$	20	10.6/19
EPJC	638-905	711	$0.1192 {}^{+0.0074}_{-0.0056}$	$0.0909 {}^{+0.0042}_{-0.0033}$	22	11.2/21
E	905-2116	1007	$0.1176 {}^{+0.0111}_{-0.0065}$	$0.0866^{+0.0057}_{-0.0036}$	26	33.6/25

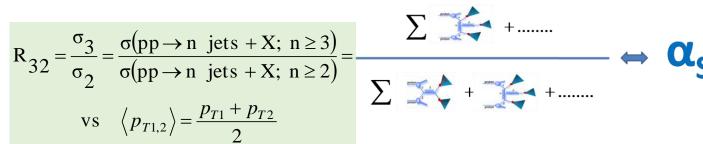

- α_s running : Perform fit for separate p_T ranges
- Test consistency with the α_{s} running

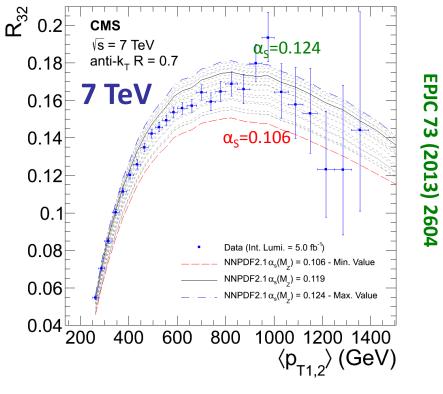




• Measurement by CMS of the double differential 3-jet cross section in m_3 and y_{max}

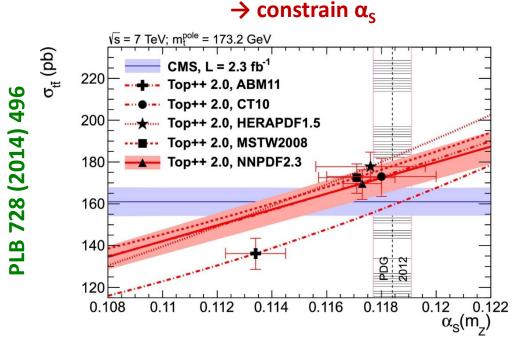
- Central fit : Two rapidity bins with CT10-NLO
- Determination at NLO •
- Total uncertainty 4 to 6 %


 $\alpha_s(M_z) = 0.1171 \pm 0.0013(\exp) \pm 0.0024(PDF)$ $\pm 0.0008(NP) \pm \frac{0.0069}{0.0040}$ (scale)


α_{s} : 3/2 inclusive jet cross sections ratio (R₃₂) at 7 TeV

- Phase space: Jet $p_T > 150 \text{ GeV}$, |y| < 2.5.
- Scale choice: $\mu_r = \mu_f = \langle p_{T1,2} \rangle$
- Advantages : Reduces experimental and other theoretical uncertainties.
- Central fit : Using the NNPDF2.1 PDF set
- Determination at NLO
- Total uncertainty 4.7 %

 $\alpha_s(M_z) = 0.1148 \pm 0.0014 (exp)$ $\pm 0.0018 (PDF) \pm 0.0050 (Theory)$



$\alpha_{\scriptscriptstyle S}$ from top-pair production cross section

- α_s determination from the top-pair production cross section in the dilepton channel. (7 TeV CMS PRD 85(2012) 112007)
- The top-pair production is sensitive to m_t^{pole} and α_s .

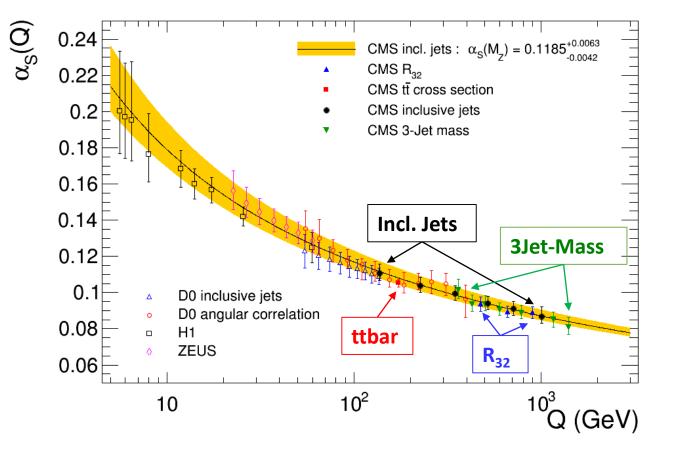
Fix m_t^{pole} =173.2±1.4 GeV

- Central fit : NNPDF2.3-NNLO (Theory at NNLO+NNLL)
- Most precise measurement at Hadron collider : total uncertainty 2.4 %.

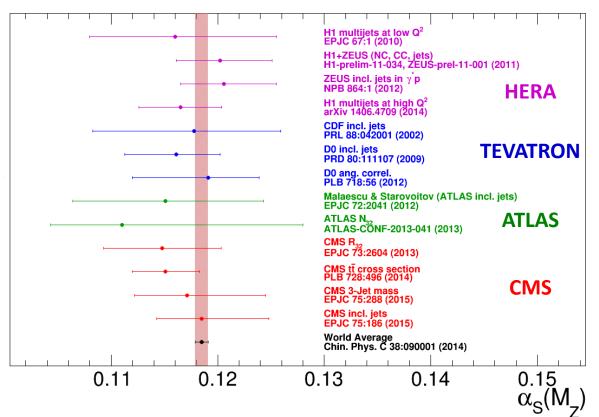
 $\begin{aligned} \alpha_{s}(M_{z}) &= 0.1151 \pm {}^{0.0017}_{0.0018} (\exp) \pm {}^{0.0013}_{0.0011} (PDF) \pm 0.0013 (m_{t}^{pole}) \\ &\pm 0.0008 (E_{LHC}) \pm {}^{0.0009}_{0.0008} (scale) \\ &= 0.1151 \pm {}^{0.0028}_{0.0027} \end{aligned}$

 α_{S} measurements

8

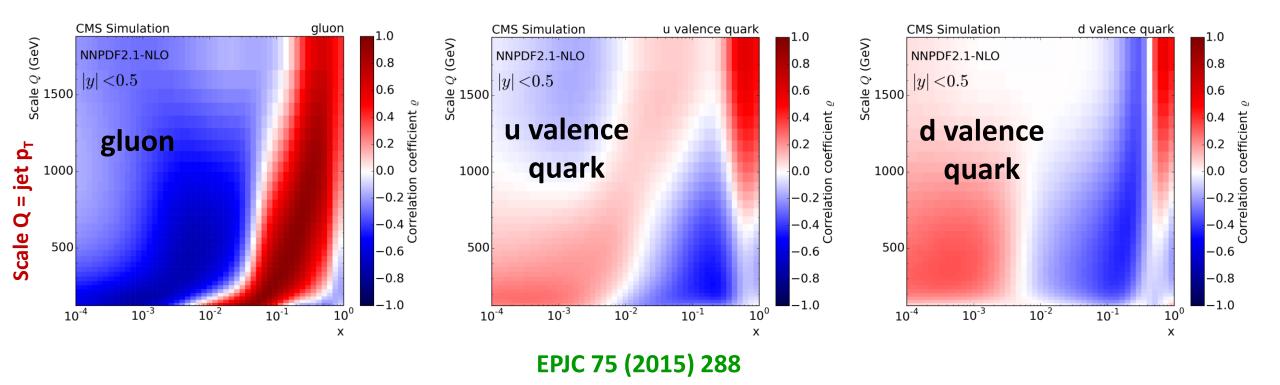

IDANNINON

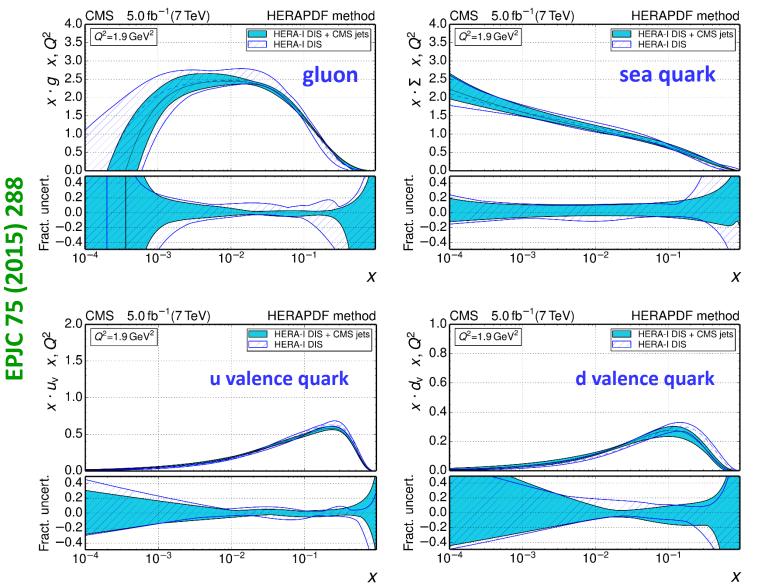
OWHITHMAN . IN THE STATE


No deviation from the predicted running of α_s is observed.

of other experiments and the word average value.

CMS measurements in good agreement with those



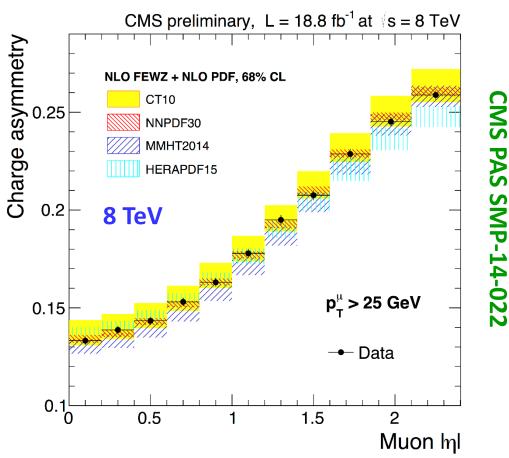

PDF constraints : Inclusive spectrum

- Gluon PDF : High correlation for most jet p_T
- Quark PDF : Higher correlations at high jet $p_{\scriptscriptstyle T}$ and high x
- Significant reduction of PDF uncertainties is expected by including CMS data.

PDF constraints : Inclusive spectrum

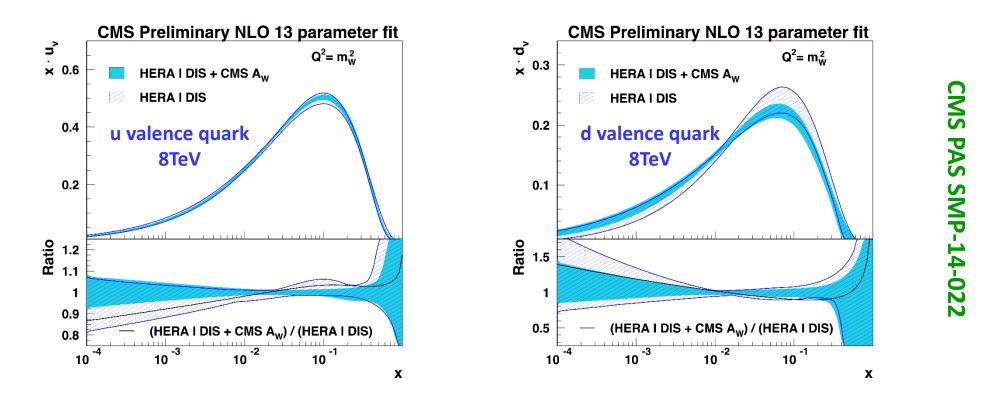
- The impact of the CMS inclusive jet data is demonstrated by adding data to PDF fit using HERA-I DIS data.
- For **gluon** distribution, the parametrization and model uncertainties are reduced significantly for almost all x range.
- For **u valence**, **d valence**, and **sea quark** distributions some reduction in their uncertainty is visible at high x

OWHLEHUN A . MORK LETT.


PDF constraints : Muon charge asymmetry in pp o W + X

- W boson production : $u\bar{d} \rightarrow W^+$ $d\bar{u} \rightarrow W^-$
- Muon Charge Asymmetry

$$\mathcal{A}(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \bar{\nu})}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \bar{\nu})}$$


- Phase space: muon $p_T > 25 \text{ GeV}$, |y| < 2.4
- The measured charge asymmetry is well described by all considered PDF models within their uncertainties.
- $\mathcal{A}(\eta)$ probes the valence-quark distribution (see also 7 TeV analysis **PRD 90 (2014) 032004**)

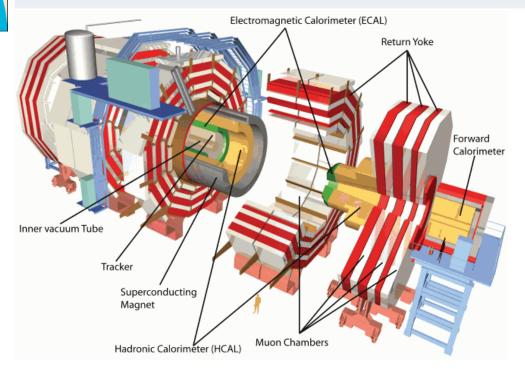
PDF constraints : Muon charge asymmetry in $pp \rightarrow W + X$

• Extraction of valence u and d quark PDF: reduction of uncertainties and a change in the shapes within the total uncertainties is observed.

- CMS has provide already the measurement of the Strong Coupling Constant with four different observables.
 - All measurements are in good agreement with those of other experiments and the word average value
 - The running of α_s is confirmed at the 1~TeV region
 - For the moment the measurement of α_s is dominated by the theoretical scale uncertainties
 - NNLO calculations are needed to improve the precision in $\alpha_{\scriptscriptstyle S}$
- CMS measurements provide constraints to PDFs
 - The inclusive jet spectrum improves significantly the **gluon PDF**
 - The muon charge asymmetry impose stronger constraints on valence quarks

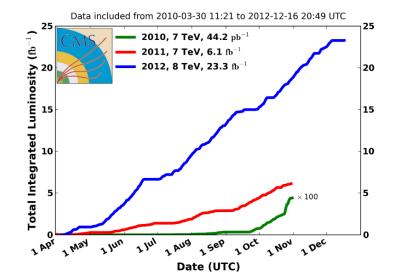
More interesting results by CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

Spare



- Introduction
- Measurements of the Strong Coupling Constant
 - From the Inclusive jet cross section
 - From the 3-jet mass cross section
 - From the ratio 3/2 of incl. jet cross sections
 - From top-pair production cross section
- PDF constraints
 - From the Inclusive jet cross section
 - From muon charge asymmetry in inclusive $pp \rightarrow W + X$ production
- Summary

CMS detector and Integrated Luminosity

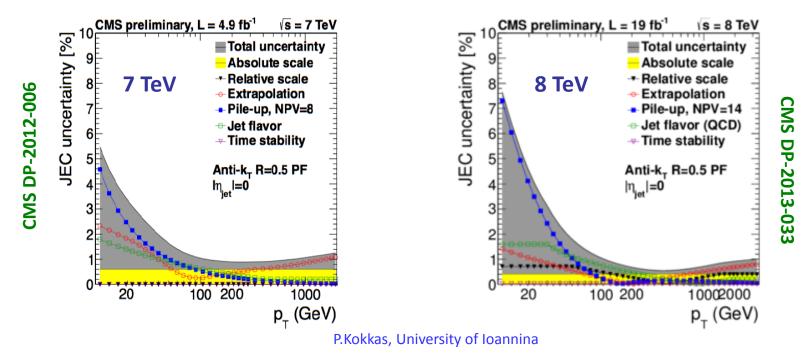


Very successful LHC operation and CMS data recording during Run 1 :

- 7 TeV (2010 & 2011)
- 8 TeV (2012)

CMS detector pseudorapidity coverage:

- Tracking: |η|<2.5
- Central Calorimetry: |η|<3
- Forward Calorimetry: 3<|η|<5


CMS Integrated Luminosity, pp

Jet Energy Scale Calibration

• For the jet energy scale calibration CMS adopted a Factorized approach.

- **Offset** \rightarrow substruction $\rho \times A_{jet}$ (ρ : the global energy density, A_{jet} : the jet area)
- **Relative** → derived from Di-jet Balance
- **Absolute** \rightarrow derived from $\gamma + jet$ and Z + jet (p_T balance and MPF)

IDANNINDA

SUNKE . 1970

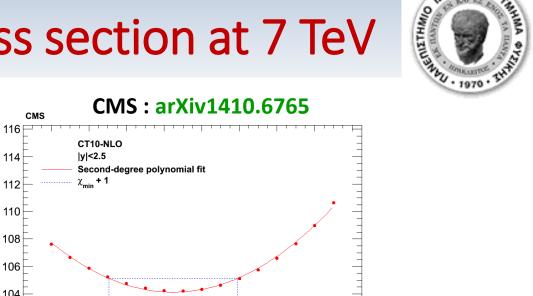
ULTHM1

α_{s} from the inclusive jet cross section at 7 TeV

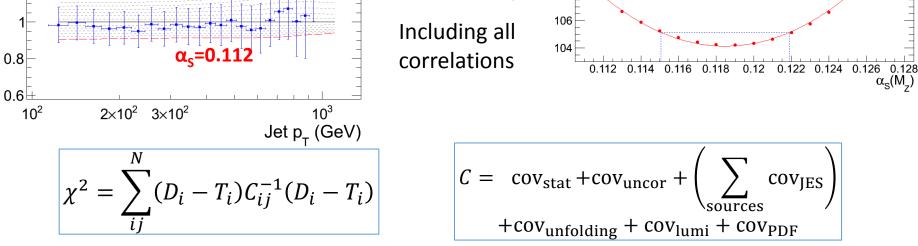
Construct χ^2

 \aleph^2

116


112

110


108

5.0 fb⁻¹ (7 TeV)

α_s=0.126

 $\alpha_{s}(M_{)})$

Systematics :

CMS

1.5≤|y|<2.0

anti-k₋ R = 0.7

Data / NP / EW

 $CT10 \alpha_{c}(M) = 0.118$

 $CT10 \alpha_{c}(M) = 0.112 - Min. value$

CT10 $\alpha_{s}(M_{-}) = 0.126$ - Max. value

1.8⊟

1.6

1.4

1.2

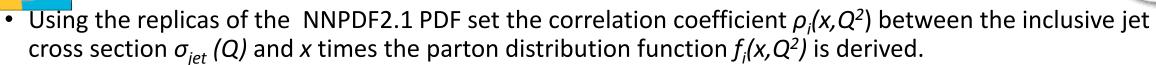
Ratio to NLO(CT10-NLO)

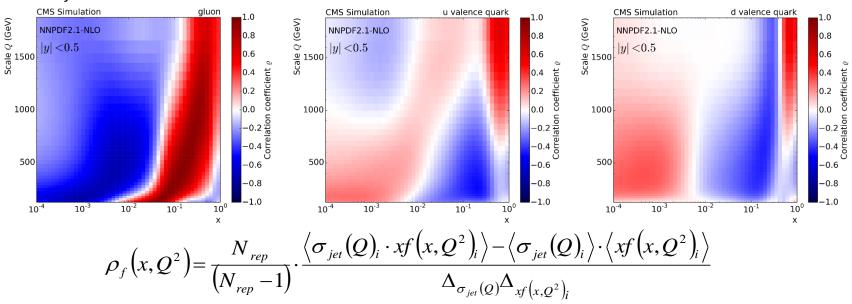
- **PDF uncertainty** : repeat fit for PDF sets errors following prescriptions of each set eigenvectors (CT10, MSTW2008) or replicas (NNPDF2.1)
- **NP uncertainty**: vary the non-pertubative correction factor considering the half of the spread of the three MC calculations as uncertainty.
- **Scale uncertainty** : repeat fit for different scale settings by varying independently μ_r/Q and μ_f/Q from ½ to 2, and get maximal deviation.

EPJC 75 (2015) 288

EPJC 73 (2013) 2604

$m_3[{ m GeV}]$	$\langle Q \rangle \; [{\rm GeV}]$	$\chi^2/n_{ m dof}$	$\alpha_S(Q)$	$\pm(\exp)$	$\pm(\mathrm{PDF})$	$\pm(NP)$	\pm (scale)
664-794	361	4.5/3	0.1013	$\pm^{0.0027}_{0.0028}$	$\pm^{0.0013}_{0.0011}$	± 0.0005	$\pm^{0.0052}_{0.0030}$
794 - 938	429	7.8/3	0.0933	± 0.0022	$\pm^{0.0012}_{0.0011}$	± 0.0005	$\pm^{0.0048}_{0.0028}$
938 - 1098	504	0.6/3	0.0934	± 0.0021	± 0.0014	± 0.0005	$\pm^{0.0043}_{0.0025}$
1098 - 1369	602	2.6/5	0.0902	± 0.0016	± 0.0016	$\pm^{0.0005}_{0.0004}$	$\pm^{0.0036}_{0.0017}$
1369 - 2172	785	8.8/13	0.0885	$\pm^{0.0010}_{0.0011}$	$\pm^{0.0017}_{0.0018}$	$\pm^{0.0004}_{0.0003}$	$\pm^{0.0038}_{0.0020}$
2172 - 2602	1164	3.6/5	0.0848	$\pm^{0.0019}_{0.0023}$	$\pm^{0.0020}_{0.0023}$	± 0.0004	$\pm^{0.0034}_{0.0021}$
2602 - 3270	1402	5.5/7	0.0807	$\pm^{0.0022}_{0.0021}$	$\pm^{0.0028}_{0.0021}$	± 0.0001	$\pm^{0.0044}_{0.0026}$

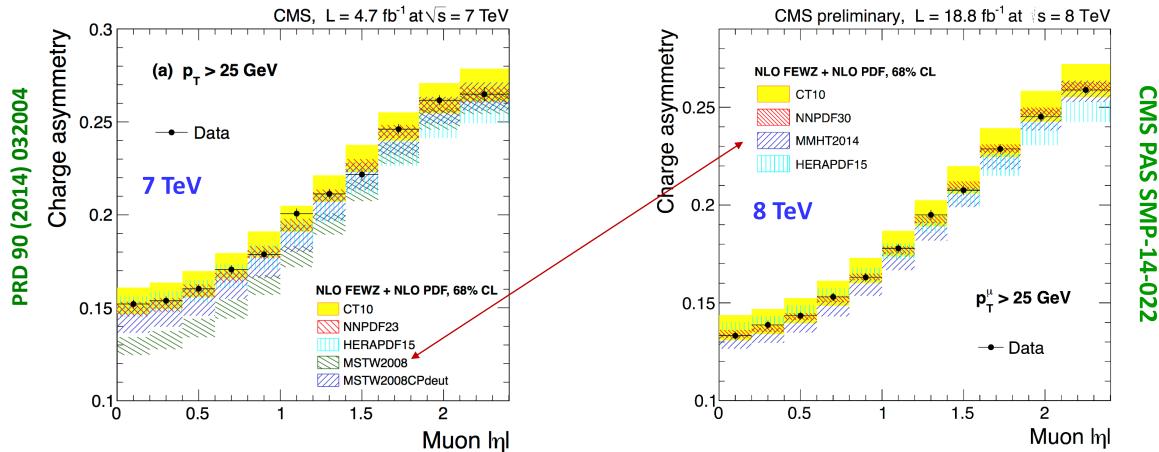

3- J	et
ma	SS


$\langle p_{T1,2} \rangle$ range (GeV)	Q (GeV)	$\alpha_S(M_Z)$	$\alpha_{S}(Q)$	No. of data points	$\chi^2/N_{\rm dof}$
420-600	474	0.1147 ± 0.0061	0.0936 ± 0.0041	6	4.4/5
600-800	664	0.1132 ± 0.0050	0.0894 ± 0.0031	5	5.9/4
800-1390	896	0.1170 ± 0.0058	0.0889 ± 0.0034	10	5.7/9

R₃₂

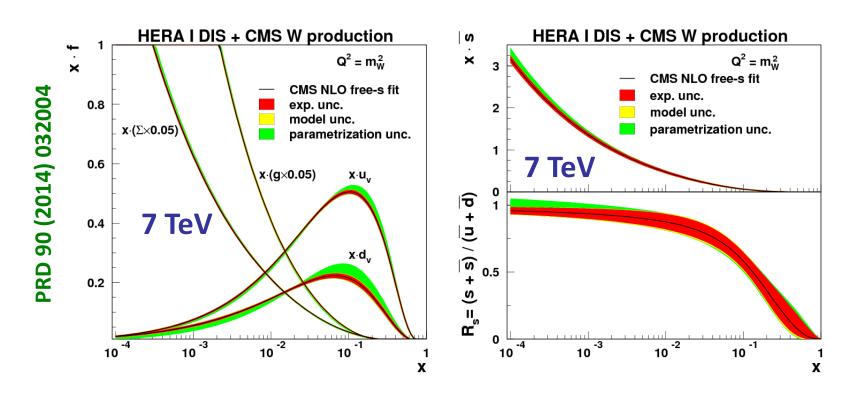
P.Kokkas, University of Ioannina

Correlation Coefficients



- N_{rep} : NNPDF2.1 PDF set replicas
- $\sigma_{_{jet}}$: incl. jet cross section
- f_i : the parton distribution function for parton flavour i
- x : the fractional parton momentum x
- Q : the relevant momentum scale
- Δ : the standard variation around the ensemble mean of $\sigma_{jet}(Q)$ and $xf(x,Q^2)_i$
- *i* : runs over all quark, anti quark and gluon flavours.

PDF constraints : Muon charge asymmetry in pp o W + X


Big Improvement : MSTW2008 -> MMHT2014

PDF constraints : CMS W production at 7 TeV

- PDF constraints using the CMS muon charge asymmetry and the W+charm measurement (JHEP 02 (2013) 013)
- Study of light quark distributions in proton and determination of strange quark density.

- The total uncertainty (left) is dominated by the parametrization uncertainty.
- The strange-quark fraction rises with energy and reaches a value comparable to that of u and d antiquarks at intermediate to low x.