

UNIVERSITY OF AMSTERDAM

Francesca Calore

Dark matter signals from the gamma-ray sky?

EPS-HEP 2015, Vienna 24th July 2015

Gamma rays from the sky

Gamma rays might be produced by DM annihilation in the halo of our Galaxy and in external galaxies.

Indirect searches

for DM annihilation or decay products in gamma rays and charged cosmic rays.

Other complementary probes:

Direct detection searches

Collider searches

Francesca Calore

Where to look for dark matter?

$$\frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}(E_{\gamma},\phi,\theta,\Delta\Omega) = \frac{\langle\sigma v\rangle}{2m_{\chi}^{2}} \cdot \sum_{i} B_{i} \frac{\mathrm{d}N_{\gamma}^{i}}{\mathrm{d}E_{\gamma}} \frac{1}{4\pi} \int_{0}^{\Delta\Omega} \mathrm{d}\Omega \int_{\mathrm{l.o.s}} \rho^{2}(s(R,\phi,\theta)) ds$$

ESO VISTA telescope: the Milky Way

SDSS & DES: dwarf spheroidal galaxies

A mysterious excess

The Galactic centre GeV excess

Hooper&Goodenough '09, Vitale&Morselli '09, etc.

Excess emission **above the astrophysical foregrounds and backgrounds**, i.e. Galactic diffuse emission (standard cosmic-ray propagation), point sources and Fermi bubbles.

A mysterious excess

The Galactic centre GeV excess

Hooper&Goodenough '09, Vitale&Morselli '09, etc.

Excess emission **above the astrophysical foregrounds and backgrounds**, i.e. Galactic diffuse emission (standard cosmic-ray propagation), point sources and Fermi bubbles.

The GeV excess spectrum

- ✓ Model systematics from the variation of Galactic diffuse models (standard assumptions).
- ✓ **Empirical and theoretical systematics** from a scan along the Galactic disc (only diagonal part of covariance matrix shown).

The GeV excess morphology

Radial extension of at least **1.48 kpc**, i.e. about **10 degrees**.

Possible interpretations

Possible interpretations

Diffuse processes

S. Caron's talk

An additional population of leptonic cosmic-ray is required at the Galactic centre

a. Steady-state source term (from e.g. SN population)

Gaggero+15

b. Time-dependent source term (from e.g. outburst event)

Francesca Calore

Outburst models

• Energetics:

$$L_{\rm GCE} \sim 10^{37} {\rm erg/s} \qquad L_{\rm bubbles} \sim 4 \times 10^{37} {\rm erg/s}$$

Hooper & Slatyer 2013 $\qquad Su+ 2010$

• High-energy electrons injected

$$E_{\rm tot} \sim 10^{51} {\rm erg} \qquad \frac{dN_e}{dE_e} \propto E_e^{-\alpha} \exp(-E_e/E_{\rm cut})$$

• Propagation and energy losses

A single-burst model **cannot** account for the observed morphology of the signal

Cholis+15

Two-burst model?^{1.2}_{1.0}

• High-energy electrons injected

 $\tau, \alpha, E_{\rm cut}, E_{\rm tot}$

• Propagation and energy losses

 $\delta, D_0, D_{zz}/D_{xx},$ $v_A, dv_c/dz,$ ISRF, B_0, r_c, z_c

- Hard injection indices (<2)
- At least two bursts
- Tuning of diffusion parameters

Francesca Calore

Unresolved point sources

Young Pulsars and Millisecond Pulsars Wang+ 2005; Abazajian 2011; Gordon & Macias 2013; Hooper+ 2013; Yuan & Zhang 2014; Hooper+ 2013; Calore+ 2014; Cholis+ 2014; Petrovic+2014; Yuang+2014; and many others

Spectrum?

Morphology?

 disc-like population => at most 10% of the excess emission.

Calore+ 2014

• **bulge** population => viable explanation.

Petrovic+2014, Yuang+2014 O'Leary+2015 Lee+2015, Bartels+2015

How to discriminate?

Wavelet decomposition of the gamma-ray sky and the statistics of Gaussian random fields

Bartels+20015

see also Lee+2015 for an independent method

How to discriminate?

Wavelet decomposition of the gamma-ray sky and the statistics of Gaussian random fields

Bartels+20015

up to 100% of the GeV excess emission might come from unresolved sources!

Conclusions

What do we know?

- ✓ An extended source in the inner part of Galaxy, consistent with a spherically symmetric density profile, does exist.
- ✓ Spectrum and morphology are now robustly characterised.
- ✓ The excess extends up to at least 10 deg in latitude and it is compatible with a unique spherically symmetric component.
- ✓ However, owing to the **background model systematics**, there is large freedom for models fitting the excess.

What can it be?

- ✓ **Dark matter** : does an incredibly good job in fitting the excess but....
- ✓ Diffuse processes from activity of the Galactic centre: might work but with a fine tuning of the parameters that seems unlikely to occur.
- ✓ Unresolved sources: are compatible to cover 100% of the emission but further evidence is needed.

Backup

Basics of the template regression technique

Data counts

Model counts

$$\mu_{i,j} = \sum_{k} \theta_{i,k} \mu_{i,j}^{(k)}$$

model counts in i-th energy bin and j-th pixel

free normalisation of the model component

$$-2\ln \mathcal{L} = 2\sum_{i,j} w_{i,j}(\mu_{i,j} - k_{i,j}\ln\mu_{i,j}) + \chi^2_{\text{ext}} \longrightarrow \theta_{i,k}$$

Francesca Calore

University of Amsterdam

Analysis set-up

Counts, 2.12 - 3.32 GeV

14.1

Data selection and standard preparation

284 weeks; 300 MeV-500 GeV

ROI: $2^{\circ} \le |b| \le 20^{\circ} \& |l| \le 20^{\circ}$

Point sources (2FGL) weighted adaptive mask.

Spatial templates used in the analysis (maximum likelihood method):

Empirical model systematics

University of Amsterdam

The covariance matrix

Flux absorbed by excess template in
 22 test regions along the Galactic disk.

Standard deviation is a first estimate for how inaccuracies in the foreground modelling affect the excess template.

Observed variations along the disk are correlated in energy.

ightarrow Define the **covariance matrix:**

$$\Sigma_{ij,\,\mathrm{mod}} = \left\langle \frac{dN}{dE_i} \frac{dN}{dE_j} \right\rangle - \left\langle \frac{dN}{dE_i} \right\rangle \left\langle \frac{dN}{dE_j} \right\rangle$$

i, j = 1, ..., 24; averaged over 22 test regions

About the morphology

distribution.

One leptonic burst?

Parameter	Units	Range	Prior
α		1 - 3	lin
δ		0.1 - 1.0	lin
D_0	$10^{28}{ m cm}^2/{ m s}$	0.1 - 20	lin
D_{zz}/D_{xx}		0.1 - 10	\log
v_A	$\rm km/s$	0–200	lin
au	Myr	0.1 - 5	lin

Francesca Calore

University of Amsterdam

One leptonic burst?

Parameter	Model A	Model B
$lpha_1$	1.2	2.0
$lpha_2$	NA	NA
$E_{\mathrm{cut},1}$	$1 { m TeV}$	$1 { m TeV}$
$E_{\mathrm{cut},2}$	NA	NA
$ au_1 \ (\mathrm{Myr})$	0.83	0.46
$ au_2~(\mathrm{Myr})$	NA	NA
$N_1 \ (10^{51} \ { m erg})$	2.89	9.87
$N_2 \ (10^{51} \ { m erg})$	NA	NA
δ	0.20	0.23
$D_0 \; (10^{28} \; { m cm}^2 { m /s})$	5.08	9.12
D_{zz}/D_{xx}	1.12	0.87
$v_A~({\rm km/s})$	176	122
$B_0~(\mu{ m G})$	11.5	11.5
$r_c \; ({ m kpc})$	10.0	10.0
$z_c \; ({ m kpc})$	2.0	2.0
$dv_c/dz~({\rm km/s/kpc})$	0.0	0.0
ISRF	1.0, 1.0	1.0, 1.0
χ^2 (p-value)	277(0.04)	317 (0.0004)

Consistency with dSph: present and future

Francesca Calore

University of Amsterdam

Consistency with dSph: present and future

Francesca Calore

University of Amsterdam