

An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility

Alec Habig, for the DUNE collaboration EPS-HEP 2015, Vienna Friday, July 24, 2015

The Deep Underground Neutrino Experiment collaboration is 750 scientists from 150 institutions in 23 countries

Who Are We?

- The collaborations formerly known as LBNE and LBNO, with some new participants
 - Mark Thomson (Cambridge) and André Rubbia (ETH Zurich) are our spokesfolk
 - First collaboration meeting was last April, new Conceptual Design Report (CDR) and "CD1 refresh" passed last week
 - Shared DoE and international funding, CERN involvement
- The beam and infrastructure are now known as Long-Baseline Neutrino Facility (LBNF)

What Will We Do?

- Build a large (40 kt) liquid argon TPC on the 4850' level of the Sanford Underground Lab in the Homestake Mine, and bask in a new, intense neutrino beam from Fermilab
 - Longer baseline, more intense, tunable energy

With What?

Staged10 kt LArTPC modules at Homestake

Two 10kt Single-phase modules ala ICARUS
Gaining experience with LARIAT, MicroBoone, CAPTAIN, SBND at FNAL

First module reference design

Dual-phase design catches ionization in gas above liquid Prototyping with WA105 at CERN Later modules could use this mode

Final goal is 40kt total Far Detector mass

With What?

Near Detector near the beam source at FNAL

Precisely measure pre-oscillation v beam spectra

and flavor

 Reference design is fine-grained straw tube tracker

- Calorimeters,0.6T magnet
- Will also do neutrino interaction physics

Why?

Fractional Flavor Content varying $\cos \delta$

Stephen Parke's famous visualization of things, as annotated by Gary Feldman

So What Might We Learn?

- Does the v_3 mass state have a v_e component?
 - Is $\theta_{13} \neq 0$? YES! (without which nothing else works)
- Is there CP violation in the lepton sector?
 - Is δ_{CP} ≠0?
- Is the v_3 mass state more massive than v_1 and v_2 (normal hierarchy) or less massive (inverted hierarchy)?
 - Absolute mass values need β and $\beta\beta$ decay experiments to nail down
 - Does the ν_3 mass state have a larger ν_μ or ν_τ component?
 - Is θ_{23} ≠ π /4?

In my biased opinion, that's 1.5 of the remaining fundamental 2 things we don't yet know about the standard model (θ_{13} , Higgs mass were #3, #4)

How Well?

- Primary goal: precision measurement of neutrino oscillation parameters
 - 3σ sensitivity to δ_{CP} for 75% of the possible values of δ_{CP} after 850-1300 kt-MW-years
 - 5σ sensitivity neutrino mass hierarchy for all possible values of δ_{CP} after 400 kt-MW-years

What's the Signal?

- Measure probability of ν_μ→ν_e oscillation for both neutrinos and antineutrinos
 - Compare to expectations for different δ_{CP} , mass hierarchies

Proton Decay

- GUTs predict protons are unstable at very long lifetimes, beyond what we have probed so far
- A LArTPC has the spatial resolution for good efficiency on popular modes involving Kaons

Atmospheric v

 Neutrinos from cosmic ray interactions in the atmosphere probe a wide range of oscillation parameter space, complementary to the more intense (but narrow band) LBNF beam

Supernovae v

• Core-collapse supernova release 99% of their binding energy in a blast of neutrinos (1% in as

kinetic energy, only 0.1% as light!)

 Observing this in 1987 revolutionized two fields

- The next time it happens (in our galaxy) we want a complete picture
 - Both for astrophysics and particle physics
 - Observing that density of neutrinos in detail will shed light on neutrino properties via collective effects not possible to probe in a lab

All the flavors

- Existing experiments would mostly see antielectron neutrinos
 - Super-K, IceCube: mostly anti-electron neutrinos
 - LVD, NOvA, Kamland, Daya Bay, Borexino: antielectron neutrinos and NC (all flavor)
 - HALO: electron neutrinos, but is small
- Measuring all flavors paints the complete picture needed to extract all the results

Garching flux seen in DUNE as calculated by SNoWGLoBES

Other topics...

- We'll have 40kt of high resolution detector deep underground, an intense beam, and a finegrained near Detector! Can probe many more things:
 - Neutrino interaction physics
 - Indirect dark matter searches
 - Cosmic ray physics
 - Lorentz and CPT violation, extra dimensions
 - Non-standard interactions, sterile neutrinos
- Exploring potential of lower energy neutrino studies:
 - Solar neutrinos
 - Diffuse supernova neutrino background

LBNF/ DUNE Schedule Summary Overview

Summary

- While existing long-baseline experiments (T2K, NOvA) might give us hints of δ_{CP} and neutrino mass hierarchy, DUNE is designed to cover most of parameters space with discovery sensitivity
- DUNE will greatly enhance the world's ability to decipher Supernova neutrinos and search for nucleon decay
- Project has a busy but doable schedule and new international cooperation

Backups

Why?

- v are leptons, interact only weakly
 - interact as flavor eigenstates $\{v_e, v_u, v_\tau\}$
 - but propagate as mass eigenstates $\{v_1, v_2, v_3\}$
- Different m's make mass states slide in and out of phase as they travel
 - So a v created as one flavor might be detected as another later

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

$$U_{e3} \equiv \sin \theta_{13} e^{-i\delta}$$

$$U_{e3} \equiv \sin \theta_{13} e^{-i\delta} \left| \sin^2 (2\theta_{23}) = 4 \left| U_{\mu 3} \right|^2 \left(1 - \left| U_{\mu 3} \right|^2 \right) \right|$$

Useful Approximations:

 v_{μ} Disappearance (2 flavors):

$$P(v_u \rightarrow v_x) = \sin^2 2\theta_{23} \sin^2 (1.27 \Delta m_{32}^2 L/E)$$

 v_e Appearance:

$$P(v_u \rightarrow v_e) \approx \frac{\sin^2 \theta_{23}}{\sin^2 2\theta_{13}} \sin^2 (1.27 \Delta m_{31}^2 L/E)$$

Where L, E are experimentally optimized and θ_{23} , θ_{13} , Δm^2_{32} are to be determined

Mass Hierarchy

 Unlike quarks and the other leptons, we do not even know which v is more massive than the next!

v_e appearance

- We will start off with few v_e in a beam of v_μ and see if more v_e pop up after some L/E
 - This isn't simply the converse of the reactor case which measures ν_e disappearance and thus θ_{13}
- Back to the oscillation approximations we use for ν_{μ} disappearance:
 - Note that while experimentally θ_{23} is close to $\pi/4$, if it's not exactly $\pi/4$ we can't tell if it's > or <

Useful Approximations:

 ν_{μ} Disappearance (2 flavors):

$$P(v_{\mu} \rightarrow v_{x}) = \sin^{2}2\theta_{23} \sin^{2}(1.27\Delta m_{32}^{2}L/E)$$

 v_e Appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \frac{\sin^{2}\theta_{23}}{\sin^{2}2\theta_{13}} \sin^{2}(1.27\Delta m^{2}_{31}L/E)$$

Where L, E are experimentally optimized and $\theta_{23},\,\theta_{13},\,\Delta m^2_{32}$ are to be determined

 And that "≈" wipes away a lot more terms which result from multiplying out the mixing matrix properly

v_e appearance

$$\begin{split} P(\stackrel{\longleftarrow}{V_{\mu}} \rightarrow \stackrel{\longleftarrow}{V_{e}}) &\approx sin^{2}2\theta_{13} sin^{2}\theta_{23} \frac{sin^{2}(A-1)\Delta}{(A-1)^{2}} \\ &\stackrel{(+)}{=} 2\alpha sin\theta_{13} sin\delta_{CP} sin2\theta_{12} sin2\theta_{23} \frac{sinA\Delta}{A} \frac{sin(A-1)\Delta}{(A-1)} sin\Delta \\ &+ 2\alpha sin\theta_{13} cos\delta_{CP} sin2\theta_{12} sin2\theta_{23} \frac{sinA\Delta}{A} \frac{sin(A-1)\Delta}{(A-1)} cos\Delta \\ &\alpha = \Delta m_{21}^{2}/\Delta m_{31}^{2} \qquad \Delta = \Delta m_{31}^{2} L/(4E) \qquad A = \stackrel{\longleftarrow}{+} G_{f} n_{e} L/(\sqrt{2}\Delta) \end{split}$$

• Note there are θ_{23} terms that are not squared, introducing sensitivity to $\theta_{23} > \pi/4$ or $<\pi/4$

Thanks to Greg Pawloski for typesetting this beast!

- CP-violating δ is present
- Matter effects are in there, differ in sign for v and antiv, so a comparison could allow sorting out the mass hierarchy
- But if θ_{13} is near zero, we learn nothing (all terms \rightarrow 0)