

Drell-Yan and vector boson plus jets measurements with the ATLAS detector

Markus Zinser

On behalf of the JOHANNES GUTENBERG **ATLAS** collaboration

UNIVERSITÄT

GEFÖRDERT VOM

Test of perturbative QCD

W+jets cross sections (Eur. Phys. J. C (2015) 75:82)

Z+jets cross sections (JHEP 07 (2013) 032)

Rjets (W+jets/Z+jets ratio) cross sections (Eur. Phys. J. C (2014) 74:3168)

W boson in association with b-jets (JHEP 06 (2013) 084)

Event Selection

W→lv

- Exactly 1 lepton
 - → $p_T > 25$ GeV, $|\eta| < 2.4 / 2.47$ (µ/e)
- $E_T^{miss} > 25 \text{ GeV}$
- m_T > 40 GeV

Z→II

- Exactly 2 leptons with opposite charge $\rightarrow p_T > 25 \text{ GeV}, |\eta| < 2.4 / 2.47 (\mu/e)$
- ∆R(I,I) > 0.2
- 66 GeV < m_{II} < 116 GeV

Jets

- Anti-k_T algorithm, R=0.4
- p_T > 30 GeV
- |y| < 4.4
- Removed if overlapping with lepton
- ΔR > 0.5

JOHANNES GUTENBERG UNIVERSITÄT MAIN2

>0 ≥1 >2 >3 ≥ 4 >5 ≥6

EPS 2015 - Markus Zinser

W+jets: Inclusive number of jets

- Thorough analysis of ~40 distributions
 - → Valuable to Monte Carlo developers
- Good agreement with BlackHat, Sherpa shows some differences for $N_{iets} > 5$

Trend towards large N_{iets} (Alpgen & Sherpa)

> \rightarrow Still compatible within the large uncertainties

Motivation: Ratio W+jets/Z+jets

- JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ
- Probes kinematic differences of jet-system recoiling against W or Z
- Significant cancellation of the uncertainties in the ratio
 - → Experimental
 - Positively correlated uncertainties: Energy scales, Backgrounds, Jet uncertainties
 - → Prediction
 - Scale & PDF uncertainties, Parton shower / Hadronization

Results: Ratio W+jets/Z+jets

Eur. Phys. J. C (2014) 74:3168 Inclusive jets: Deviation of Sherpa for large N_{iets} $(\sigma_{W+N_{iets}})/(\sigma_{Z+N_{iets}})$ ATLAS $(W(\rightarrow lv))/(Z(\rightarrow l^+l)) + jets$ p_{T} leading jet (\geq 2jets): Well modeled, except anti-k, jets, R=0.4, /// Data, vs=7 TeV, 4.6 fb $p_{\tau}^{j} > 30 \text{ GeV}, |y'| < 4.4$ **BLACKHAT+SHERPA** very low p_{τ} ALPGEN+HERWIG SHERPA Angular separation of jets: Small trend at low 12 separation 10 R ^(si, i) /dp'_)/(dσ_{Z+≥2j}/dp' ATLAS ATLAS $(W(\rightarrow |v))/(Z(\rightarrow |+1)) + \geq 2$ iet $(W(\rightarrow lv))/(Z(\rightarrow l^{\dagger}I))$ 1.8⊢ anti-k, jets, R=0.4, 1.8 anti-k, jets, R=0.4, Data, \s=7 TeV, 4.6 fb ∕p/ Data, \s=7 TeV, 4.6 fb $p_{T}^{j} > 30 \text{ GeV}, |y'| < 4.4$ BLACKHAT+SHERPA $p_{-}^{l} > 30 \text{ GeV}, |y_{-}^{l}| < 4$ BLACKHAT+SHERPA ALPGEN+HERWIG ALPGEN+HERWIG $_{1,j_2})/(d\sigma_{Z_{+2}})$ SHERPA SHERPA NLO / Data ċ 1.2 BLACKHAT+SHERPA ď 1.1 $(1/R_{>2i})(d\sigma_W$ 0.9 0.8 MC / Data 1.2 ALPGEN 1.1 Data NLO / Data BI ACKHAT+SHERE 0.9 0 0.8 0.9 0.8 MC / Data 1.2 SHERPA MC / Data ALPGEN ALPGEN 1.1 В 0.9 Data 0.8 Data SHERPA SHERPA ≥ 0 >3 ≥4 >2 ≥1 MC / $\mathsf{N}_{\mathsf{iets}}$ Я 0.9 0.8 200 300 00 400 500 ATLAS data has been used to 5 p^j_T (leading jet) [GeV] $\Delta R_{i1,i2}$ improve MC description of the data

22 July 2015

Test of non-perturbative QCD

Z transverse momentum distribution (JHEP09 (2014) 145)

Phi* distribution of Drell-Yan lepton pairs (Phys. Lett. B 720 (2013) 32-51)

JHEP09 (2014) 145

- Probes QCD ISR, p_{T} distributions of partons, gluon PDF, higher order pQCD
- Important input for searches with W and Z backgrounds and in particular for W mass measurement due to improved shower tunes
- → Three different rapidity regions
 → Three different final state kinematics: born, bare, dressed
- Uncertainties ~ 1% below Z-p_τ 100 GeV

JOHANNES GUTENBERG

Results: Z-p_T

- Combined cross section compared with predictions from
 - → FEWZ and DYNNLO: Fixed-order calculation, CT10 PDF
 - → ResBos (NNLL): Resummed multiple and collinear gluon emission, CT10 PDF
- Combined cross section used to tune Monte Carlo

Input for PDF fits & test of pQCD

Z boson in association with b-jets (JHEP10 (2014) 141)

Low-mass Drell-Yan differential cross section (JHEP06 (2014) 112) W plus D/D* and c-jet (JHEP05 (2014) 068)

High-mass Drell-Yan differential cross section (Phys. Lett. B 725 (2013) 223-242)

- Important background for associated Higgs production with H→bb and BSM models
- Two schemes used in pQCD calculations: 4 and 5 flavor initial state
 - \rightarrow a) only exists in 5 flavor scheme
 - \rightarrow Can be sensitive to b-quark PDF

Measurement: Z+b(b)

- Z+b can not yet constrain b-PDF due to large scale uncertainty
- Z+bb sensitive to gluon splitting

Data

MCFM aMC@NLO 5FNS

ALPGEN+HJ SHERPA

s = 7 TeV, 4.6 fb

Good agreement

in 5 FNS (\geq 1b)

0.3

ATLAS

Z+≥2 b-jets

[dd]

0.6

0.5

 σ (Zbb) [pb]

Run I Summary

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

A lot more 8 TeV results still in the pipeline!

Run II Preview

- JOHANNES GUTENBERG UNIVERSITÄT MAINZ
- Very early results of the first data from LHC Vs=13 TeV ppcollisions
 - →Results shown for dataset collected from 13th of June to 14th of July
 - \rightarrow Corresponds to integrated luminosity of 6.4 pb⁻¹ to 78 pb⁻¹
 - →Current luminosity uncertainty: 9%
- W and Z production at 13 TeV is ideal for validating early detector performance
 - →Object reconstruction
 - →Analysis software chain
- Uncertainties from both very early and statistics limited data/MC studies as well as studies using Run1 knowledge and MC extrapolation
 - →Luminosity uncertainty not included

performance 400 200 → Good description

Good understanding

of electron and muon

- of electron shower shapes
- \rightarrow "Rediscovery" of SM particles at 13 TeV

0 0.1 0.2 0.3 0.4 0.5 0.6

ATLAS Preliminary

ee

√*s*=13 TeV, ∫*L*d*t*=18 pb⁻¹

Z→ee

Data

Run II Preview: Performance

Entries / 0.05

1600

1400

1200

1000

800

600

W

/Ψ

IOHANNES GUTENBERG UNIVERSITÄT MAIN

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/EGAM-2015-003/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/MUON-2015-001/

 10^{2}

Run II Preview: Z

200

150

100

50E

Data / MC 1.2 / MC 9.0 / MC 9.0 / MC

0.6

- **Exactly 2 leptons** with opposite charge
 - \rightarrow p_T > 25 GeV, \rightarrow | η | < 2.4 / 2.47 (μ /e)
- $66 \text{ GeV} < m_{II} < 116 \text{ GeV}$

Yield and shapes agree well 300 • with the SM expectation within systematic uncertainties

Z→e⁺e⁻

- Data

Z→e⁺e⁻

 $Z \rightarrow \tau^+ \tau^-$

Тор

Diboson

ATLAS Preliminary

13 TeV, 6.4 pb⁻¹

Z→ee

JOHANNES GUTENBERG UNIVERSITÄT MAIN

Run II Preview: W

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Exactly 1 lepton $\rightarrow p_T > 25 \text{ GeV}$ $\rightarrow |\eta| < 2.4 / 2.47 (\mu/e)$
- $E_T^{miss} > 25 \text{ GeV}$
- m_T > 50 GeV

Yield and shapes agree well with the SM expectation within systematic uncertainties

W→ev

- Data

W→ev Multijet

₩→τν

 $Z \rightarrow \tau^+ \tau^-$

Z→e⁺e

Top

ATLAS Preliminary

13 TeV, 6.4 pb⁻¹

<u>×1</u>0³

W→ev

3.5⊢

3

2

1.5

0.5

2.5

Entries / 2 GeV

Run II Preview: Z+jets

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Anti-k_T R=0.4 Jets
 → p_T > 30 GeV
 → |η| < 4.4, |y| < 2.5
- Comparison to Sherpa v2.1

 Yield and shapes agree well with the SM expectation within systematic uncertainties

ATL-PHYS-PUB-2015-021

22 July 2015

Z→ee+jets

Run II Preview: High p_T Regime

Events 10⁴ W ATLAS Preliminary W ATLAS Preliminary e μ Тор \s = 13 TeV, 78 pb⁻¹ Тор \s = 13 TeV, 78 pb⁻¹ 10⁴ Lepton + E_{τ}^{miss} • Ζ/γ* Z/γ* 10^{3} Diboson Diboson 10³ Multi-Jet Multi-Jet \rightarrow pT > 65 GeV 10² 10² \rightarrow E_T^{miss} > 65 GeV 10 10 10 10 90100 200 500 600 90100 200 300 400 500 600 300 400 Transverse mass [GeV] Transverse mass [GeV]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/EXOT-2015-002/

۲

Conclusion

 Run I measurements being finalized as Run II dataset is coming

→ Precise Run I results are still coming!

- Probes of pQCD, n-pQCD, PDFs, consistency of the SM
 In general good agreement with SM predictions
 A lot of measurements theorist can dig into
- Run II will continue to provide precision measurements in new kinematic regions

→Good understanding of the detector

→Yield and shapes agree well with the SM expectation

→ATLAS ready for first W,Z cross section measurements and detailed follow-up studies

Backup

W+jets

IGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Eur. Phys. J. C (2015) 75:82

W+jets

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

W+jets

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Ratio W+jets/Z+jets

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Ratio W+jets/Z+jets

Eur. Phys. J. C (2014) 74:3168

						1					
$(W \to e\nu)/(Z \to ee)$						$(W \to \mu \nu)/(Z \to \mu \mu)$					
$N_{ m jets}$	≥ 0	≥ 1	≥ 2	≥ 3	≥ 4	$N_{\rm jets}$	≥ 0	≥ 1	≥ 2	≥ 3	≥ 4
Electron	0.89	0.92	0.93	0.97	1.0	Muon	1.1	1.2	1.1	0.86	0.87
JES	0.094	2.0	2.0	3.5	5.7	$_{ m JES}$	0.10	0.84	0.71	1.8	2.6
JER	0.25	2.4	3.5	4.3	6.4	$_{ m JER}$	0.094	1.6	1.8	2.6	4.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.19	1.7	1.2	1.2	1.0	$E_{\mathrm{T}}^{\mathrm{miss}}$	0.30	1.0	0.94	0.97	0.99
$t\bar{t}^{-}$	0.024	0.23	1.0	4.9	14	$t\bar{t}$	0.018	0.18	0.87	4.3	12
Multi-jet	0.81	1.6	1.5	2.2	6.2	Multi-jet	0.20	0.60	1.1	1.7	2.7
Other backgrounds	0.12	0.57	0.58	0.76	1.0	Other backgrounds	0.21	0.24	0.28	0.42	0.60
Unfolding	0.20	0.56	0.86	1.2	1.4	Unfolding	0.22	0.59	0.90	1.2	1.2
Luminosity	0.062	0.26	0.27	0.34	0.44	Luminosity	0.10	0.12	0.11	0.088	0.023
Total	1.3	4.1	4.8	8.2	18	Total	1.2	2.5	3.0	5.9	13

Z+b(b)

22 July 2015

27

Z+b(b)

JHEP10 (2014) 141

JHEP09 (2014) 145