

Precision measurements of Standard Model parameters with the ATLAS detector

EPS-HEP 2015, Vienna

July 23, 2015

Aleksandra Dimitrievska on behalf of the ATLAS Collaboration

Institute of Physics, Belgrade

Introduction

- Standard Model is over-constrained (with the Higgs boson discovery)
- The precision measurements are of great importance for testing the Standard Model
- Indirect information of new physics
- Figures show scans of M_W vs m_t and M_W vs $\sin^2(\theta_{eff}^l)$ for the direct measurement (green band) compared to the fit including direct M_H (blue band)
- *M*_W and sin²(θ^l_{eff}) have become the sensitive probe for new physics (both are "tree" level SM predictions)
- This talk will focus on:
 - ATLAS MEASUREMENT OF THE WEAK MIXING ANGLE
 - Towards the $M_{
 m W}$ measurement

Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector http://arxiv.org/pdf/1503.03709v1.pdf (submitted to JHEP)

Leptons produced in $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+l^-$ are expected to have a forward-backward asymmetry with respect to the quark direction in the rest frame of the dilepton system (Collins-Soper frame)

 $\odot\,$ The angle between the lepton and the quark in CS frame:

$$\cos \theta_{\text{CS}}^* = \frac{p_{z,ll}}{|p_{z,ll}|} \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{m_{ll} \sqrt{m_{ll}^2 + p_{T,ll}^2}}, \text{ where } p_i^{\pm} = \frac{1}{\sqrt{2}} (E_i \pm p_{i,z})$$

 \odot The direction of the incoming quark needs to be known.

○ The asymmetry:

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

where σ_F and σ_B are the cross sections for forward and backward configurations, is measured as a function of the invariant mass of the dilepton system.

- The electroweak mixing angle can be extracted from the asymmetry.
- Forward direction is defined as the longitudinal boost of the resulting lepton pair
 - probability of misidentifying the quark direction decreases with with increasing boost of the dilepton system
 - valence quarks

ATLAS Detector and Event Selection

- $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ decays in 2011 data with 4.8 fb^{-1} for electron and 4.6 fb^{-1} for muon channel.
 - Central Electrons: $|\eta| < 2.47$ (ID+Calo)
 - Forward Electrons: $2.5 < |\eta| < 4.9$ (Calo)

- MC signal samples: PYTHIA 6.4 (MSTW2008 LO) + POWHEG FSR from QED taken using PHOTOS cross-section at NNLO using PHOZPR (MSTW2008 NNLO)
- Background:
 - $Z/\gamma^* \rightarrow \tau \tau$: PYTHIA 6.4
 - WW, ZZ, WZ: HERWIG 6.510
 - $\tau \bar{\tau}$: MC@NLO 4.01 + HERWIG
 - Multi-jet: Data-driven methods

Invariant Mass and $\cos \theta_{CS}^*$ Distributions

Detector-Level Forward-Backward Asymmetry

 $A_{\rm FB}$ is number of forward and backward events for each invariant mass bin:

$$A_{\rm FB} = \frac{N_{\cos\theta_{CS}} \ge 0 - N_{\cos\theta_{CS}} < 0}{N_{\cos\theta_{CS}} \ge 0 + N_{\cos\theta_{CS}} < 0}$$

after background subtraction.

Good agreement between Data and simulation.

Particle-Level Forward-Backward Asymmetry

Iterative Bayesian unfolding method must correct for :

- Detector effects
- QED radiative corrections
- Remove dilution effects (wrong choice is made for the direction of the incoming quark):
 - depends on the generator
 - the contribution from the PDFs becomes the dominant systematic uncertainty
- The fully corrected spectra for Born-level leptons:

Systematics on Forward-Backward Asymmetry

CC electrons							
Uncertainty	$6670\mathrm{GeV}$	$70250\mathrm{GeV}$	$2501000\mathrm{GeV}$				
Unfolding	$\sim 1 \times 10^{-2}$	$(2-5) \times 10^{-3}$	$\sim 4 \times 10^{-4}$				
Energy scale/resolution	$\sim 7 \times 10^{-3}$	$(0.5-2) \times 10^{-3}$	$\sim 2 \times 10^{-2}$				
MC statistics	$\sim 5 \times 10^{-3}$	$(0.1-1) \times 10^{-3}$	$(3-20) \times 10^{-3}$				
PDF	$\sim 2 \times 10^{-3}$	$(1-8) \times 10^{-4}$	$(0.7-3) \times 10^{-3}$				
Other	$\sim 1 \times 10^{-3}$	$(0.1-2) \times 10^{-3}$	$(5-9) \times 10^{-3}$				
CF electrons							
Uncertainty	$66-70{ m GeV}$	$70-250\mathrm{GeV}$	$2501000\mathrm{GeV}$				
Unfolding	$\sim 2 \times 10^{-2}$	$(0.5-2) \times 10^{-2}$	-				
Energy scale/resolution	$\sim 1 \times 10^{-2}$	$(0.5-7) \times 10^{-2}$	-				
MC statistics	$\sim 1 \times 10^{-2}$	$(1-7) \times 10^{-3}$	-				
Background	$\sim 3 \times 10^{-2}$	$(0.5-1) \times 10^{-2}$	-				
PDF	$\sim 4 \times 10^{-3}$	$(2-6) \times 10^{-4}$	-				
Other	$\sim 1 \times 10^{-3}$	$(1-5) \times 10^{-4}$	-				
Muons							
Uncertainty	$66-70{ m GeV}$	$70-250\mathrm{GeV}$	$2501000\mathrm{GeV}$				
Unfolding	$\sim 1 \times 10^{-2}$	$(1-4) \times 10^{-3}$	$\sim 5 \times 10^{-4}$				
Energy scale/resolution	$\sim 8 \times 10^{-3}$	$(3-6) \times 10^{-3}$	$\sim 5 \times 10^{-3}$				
MC statistics	$\sim 5 \times 10^{-3}$	$(0.1-1) \times 10^{-3}$	$(2-30) \times 10^{-3}$				
PDF	$\sim 2 \times 10^{-3}$	$(1-8) \times 10^{-4}$	$(0.3-3) \times 10^{-3}$				
Other	$\sim 1 \times 10^{-3}$	$(0.5-1) \times 10^{-3}$	$(3-10) \times 10^{-3}$				

- Unfolding uncertainty: reweight spectrum to data and then use response matrix to fold and unfold the spectrum
- Multi-jet background modelling: difference between two methods
- Other experimental systematic uncertainties: energy scaling and resolution are the largest contributions
- PDF uncertainties: reweighted to eigenvalues in the CT10 PDF set (at 68% CL)

Measurement of The Effective Weak Mixing Angle

- $\sin^2(\theta_{\text{eff}}^1)$ was extracted from each of the measured A_{FB} spectra by comparing the detector-level asymmetry to Monte Carlo predictions produced with varying initial values of the weak mixing angle
- PYTHIA templates with initial values $0.218 \le \sin^2(\theta_{\text{eff}}^{\text{l}}) \le 0.238$
- $\bigcirc \chi^2$ fits in the mass range 70 250 GeV

	$\sin^2 heta_{ m eff}^{ m lept}$			
CC electron	$0.2302 \pm 0.0009(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2302 \pm 0.0016$			
CF electron	$0.2312 \pm 0.0007(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2312 \pm 0.0014$			
Muon	$0.2307 \pm 0.0009(\text{stat.}) \pm 0.0008(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2307 \pm 0.0015$			
El. combined	$0.2308 \pm 0.0006(\text{stat.}) \pm 0.0007(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2308 \pm 0.0013$			
Combined	$0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012$			

Systematics on The Effective Weak Mixing Angle

	CC electrons	CF electrons	Muons	Combined
Uncertainty source	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$
PDF	10	10	9	9
MC statistics	5	2	5	2
Electron energy scale	4	6	-	3
Electron energy resolution	4	5	-	2
Muon energy scale	_	-	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2

○ Final uncertainty dominated by PDF (ATLAS-epWZ12 LO PDF set)

- Variation of PDF set leads to significant shifts
- MSTW2008 shifts down the value by 0.002
- precision measurements are needed to constrain PDFs W/Z cross-section measurement, Angular distributions

$$\sin^2(\theta_{\text{eff}}^1) = 0.2308 \pm 0.0012$$

- Agreement with PDG global fit (0.6 σ): $\sin^2(\theta_{eff}^l) = 0.23146 \pm 0.00012$
- Result is about 10 times less precise than LEP+SLC
 - limited by the PDF uncertainty

Determination of **Muon Asymmetry Parameter** A_{μ} :

 \bigcirc can be estimated from A_{FB} , assuming the SM value for A_q and estimation

$$\sin^2 \theta_{\text{eff}}^q = \sin^2 \theta_{\text{eff}}^\mu = \sin^2 \theta_{\text{eff}}^{\text{lept}} \text{ (valid up to } 1.5 \cdot 10^{-3}\text{):} A_\mu = \frac{2(1-4\sin^2 \theta_{\text{eff}}^{\text{lept}})}{1+(1-4\sin^2 \theta_{\text{eff}}^{\text{lept}})}$$

 $||A_{\mu} = 0.153 \pm 0.007(stat.) \pm 0.009(syst.) = 0.153 \pm 0.012$

 in agreement with measurements from LEP/SLD (0.142 ± 0.015) http://arxiv.org/pdf/hep-ex/0509008v3.pdf

Towards the M_W Measurement

- Among electroweak observables, the W mass is the least constrained by current experimental data
- $\, \odot \,$ indirect determination better by factor of ~ 2
- \bigcirc world average $\delta M_{\rm W} = 15 \,{\rm MeV}$
- \bigcirc natural goal at the LHC δM_W < 10 MeV
- Measurement is dominated by physics modeling (PDFs)
- Basic objects: **lepton** and **hadronic recoil**
- \bigcirc *Z* events can be used for calibration
- \bigcirc $M_{\rm W}$ is extracted from the comparison of data with MC templates of the mass-sensitive distributions: $p_{\rm T}^{\rm l}$ and $M_{\rm T}$

Summary

ATLAS measurement of the weak mixing angle

- \odot sin²(θ_{eff}^{l}) = 0.2308 ± 0.0005(*stat.*) ± 0.0006(*syst.*) ± 0.0009(*PDF*) = 0.2308 ± 0.0012
- Good agreement with other measurements
- Uncertainty is dominated by the PDFs (~ 75%)
- Determined value of muon asymmetry parameter is in good agreement with previous measurements

Towards the $M_{\rm W}$ Measurement

- Detector calibration is under control:
 - Electron Calibration: Eur.Phys.J. C74 (2014) 10, 3071
 - Muon Calibration: Eur.Phys.J. C74 (2014) 11, 3130
- Physics modeling of *W* production is a challenge

Further electroweak measurements are important in order to constrain the models:

- \bigcirc *W*/*Z* cross-section measurement¹, *W* charge asymmetry, *W*+ charm production \bigcirc p_T^Z measurement²
- $\bigcirc p_{T}^{W}$ measurement (needs low pile-up Data sample)

¹Phys. Rev. D 85, 072004, 2012; Phys. Rev. Lett. 109, 012001, 2012 ²Phys. Lett. B 738, 25, 2014; Phys. Lett. B 720, 32, 2013

Backup

Pull values for SM fit defined as deviations to the indirect determinations, divided by total error:

- Direct measurement (data)
- Full fit result
- Fit result without using corresponding direct constraint from the measurement
- Total error: error of direct measurement plus error from indirect determination
- The prediction is often more precise then the **measurement**, exceptions: M_H , M_Z , m_t , $\Delta \alpha_{had}^{(5)}(M_Z^2)$

