Measurements of four-lepton production in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector

(ATLAS-CONF-2015-031)

Lailin Xu

Brookhaven National Lab

On behalf of ATLAS Collaboration

EPS-HEP 2015, Vienna, Austria Jul. 22-29, 2015

Lailin Xu

Introduction

- Very rich physics with 4l production at the LHC
 - Produced in resonant Z- and H-bosons, as well as continuum ZZ productions from qq, gg, and qg initial states
 - An important channel to test SM gauge sector and Higgs sector
 - Sensitive to new physics

Four-lepton measurements

Single Z resonance	/	ATLAS: Phys. Rev. Lett. 112, 231806 CMS: JHEP 12 (2012) 034	m _{4၊} [80, 100] GeV
	\bar{q} Z/γ^* ℓ^+ ℓ^+	CIVIS. 311E1 12 (2012) 054	111 ₄ [00, 100] 3 0 4
H→ZZ→4I	$\begin{array}{c} g \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ g \end{array}$	Higgs discovery ATLAS: Phys.Lett. B716 (2012) 1-29 CMS: Phys. Lett. B 716 (2012) 30	m _{4l} [120, 130] GeV
off-shell Higgs	$\begin{array}{c} g \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ATLAS: <u>arXiv:1503.01060</u> CMS: Phys. Lett. B 736 (2014) 64	ATLAS: m _{4l} > 350 GeV CMS: m _{4l} > 400 GeV
on shell ZZ	q Z/γ^* ℓ^+ \bar{q} ℓ^-	ATLAS: ATLAS-CONF-2013-020 CMS: Phys. Lett. B 740 (2015) 250	ATLAS: m _z [66, 116] GeV CMS:m _z [60, 120] GeV

Analysis overview

Physics goals:

- Measure the 4l (4e, 4μ , $2e2\mu$) production cross section (integrated and differential) inclusively (Z/H/ZZ) from [80, 1000] GeV
- Determine the signal strength of the gg \rightarrow ZZ in high mass region m₄₁ > 180 GeV
- Dataset used: 20.3 fb⁻¹ at 8 TeV
- Signal modeling:
 - qq→ZZ and on-shell Higgs (ggF and VBF): Powheg(NLO QCD)+ Pythia8, with higher-order corrections (NNLO QCD and NLO EW)
 - On-shell Higgs (VH and ttH): Pythia8
 - VBF ZZ and off-shell Higgs (and interference): Madgraph
 - $gg \rightarrow (H^* \rightarrow) ZZ: MCFM(LO QCD) + Pythia8$
- Background (~5% of the total event yields):
 - Z+jets, $t\bar{t}$ are estimated with data
 - WZ, $Z\gamma$, tZ, $t\bar{t}V$, VVV (V=W, Z), DPI ZZ are estimated with Monte Carlo (MC)

High order corrections

- NNLO QCD and NLO EW corrections are used for
 - $qq \rightarrow ZZ$, for normalization and for m_{41} spectrum correction
 - On-Shell Higgs production for normalization

- Non-resonant $gg \rightarrow (H^*) \rightarrow ZZ$:
 - NNLO QCD corrections are also available for the off-shell Higgs production
 - Only LO calculations available for gg→ZZ continuum process
 - LO cross section from MCFM is used to normalize the gg process

Main event selection

- Two pairs of same-flavor opposite-charge leptons (quadruplet):
 - Electrons: $E_T > 7$ GeV and $|\eta| < 2.47$
 - Muons: $p_T > 6$ GeV and $|\eta| < 2.7$
 - Passing isolation and impact parameter requirements
- Kinematic selection:
 - The three leading leptons in the quadruplet have $p_T > 20$, 15, and 10 (8 for muon) GeV
 - Leading di-lepton pair: 50 < m₁₂ < 120 GeV
 - Sub-leading di-lepton pair: 12 < m₃₄ < 120 GeV
 - Dilepton pair p_{τ} > 2 GeV
- Mass window: 80 < m₄₁ < 1000 GeV

Fake background estimation

- Two types of reducible (fake) background:
 - $Z(\rightarrow II) + \mu\mu$: fake muons from Z+ heavy flavor jets, $t\bar{t}$
 - $Z(\rightarrow II)$ + ee: fake electrons from Z+ light flavor jets, $t\bar{t}$
- Perform simultaneously fit in background control regions
- The fitted scale factors in the control regions are extrapolated to the signal region using efficiencies obtained from simulation

Events / 5

Il+ee control region with inverted track isolation requirement

II+ μμ control region with inverted impact parameter requirement

Observed and predicted events

Observed and predicted 4l events:

Channel	N^{Data}	$N_{expected}^{Total}$	N_{non-gg}^{signal}	N_{gg}^{signal}	$N_{ au}^{MC}$	N_{bkg}
4e	85	80 ± 4	68.4 ± 3.4	6.24 ± 0.31	1.28 ± 0.06	3.6 ± 0.5
4μ	156	150.2 ± 2.9	128.2 ± 2.5	11.00 ± 0.21	2.18 ± 0.09	9.0 ± 1.5
$2e2\mu$	235	205 ± 5	172 ± 5	16.0 ± 0.4	3.08 ± 0.13	13.6 ± 2.1
Total	476	435 ± 9	369 ± 9	33.3 ± 0.8	6.54 ± 0.14	26.2 ± 3.6

Cross section extraction

- The cross section is firstly extracted from the experimental phase space defined by the event selection criteria (fiducial phase-space)
 - A correction factor C_{4I} is defined to account for the trigger and reconstruction efficiencies between simulation and data in the fiducial phase-space

$$\sigma_{4\ell}^{fiducial} = \frac{N_{obs} - N_b}{\mathcal{L} \cdot C_{4\ell} \cdot K_{\tau}}$$

$$K_{ au}=1+rac{N_{ au}^{
m MC}}{N_{
m sig}^{
m MC}}$$
 contribution from au -lepton decays (<2%)

- Then extrapolated to an extended phase-space:
 - -~ 80 < m4l < 1000 GeV, $m_{l^+l^-} >$ 4 GeV, $p_T^{Z_{1,2}} >$ 2 GeV, with 4 leptons each with p_ > 5 GeV and $|\eta| <$ 2.8
 - The extrapolation factors (acceptance) A₄₁ are evaluated using MC

$$\sigma_{4\ell}^{phase-space} = \frac{N_{obs} - N_b}{\mathcal{L} \cdot A_{4\ell} \cdot C_{4\ell} \cdot K_{\tau}}$$

Channel	4e	4μ	$2e2\mu$
$C_{4\ell}$	53.3%	82.2%	67.7%
$A_{4\ell}$	41.6%	50.3%	42.2%

A Likelihood fit is performed to extract the cross sections

Systematic uncertainties

The overall background estimation uncertainty is 12%, and the impact on the measured cross sections is < 1%

C _{4I} uncertainties				A _{4I} uncertainties				
Sources	$\Delta C_{4\ell}/C_{4\ell}$			$\Delta A_{4\ell}/A_{4\ell}$				
	4 <i>e</i>	4μ	$2e2\mu$	Sources	4 <i>e</i>	4μ	$2e2\mu$	
e experimental	4.8%	0	2.3%	PDF, μ_R , μ_F , PS	1.2%	1.0%	1.6%	
μ experimental	0	1.8%	0.9%	Higher-order corrections	4.0%	3.0%	3.9%	
PDF, μ_R , μ_F , PS	0.1%	0.1%	0.2%		$\Delta(A_{4\ell}$	$\times C_{4\ell})/(1$	$A_{4\ell} \times C_{4\ell}$	
Higher-order corrections	0.6%	0.2%	0.3%	PDF, μ_R , μ_F , PS	1.4%	1.1%	1.7%	
Combined uncertainty	4.9%	1.9%	2.5%	Higher-order corrections	4.6%	3.2%	4.2%	

Largest uncertainties:

Electron identification (4.1%)

Theoretical uncertainty in the NNLO QCD corrections (4.6%)

Cross section results

	Fiducial Cross Section [fb]	SM Predictions [fb]	=	
σ_{4e}^{fid}	$7.4^{+0.9}_{-0.8}$ (stat) $^{+0.4}_{-0.3}$ (syst) $^{+0.2}_{-0.2}$ (lumi)	6.9 ± 0.6		the extended phase space [fb]
$\sigma_{4\mu}^{fid}$	$8.7^{+0.8}_{-0.7}$ (stat) $^{+0.2}_{-0.2}$ (syst) $^{+0.3}_{-0.2}$ (lumi)	8.3 ± 0.7	1.0	$73^{+4}_{-4} \text{ (stat) } ^{+4}_{-4} \text{ (syst) } ^{+2}_{-2} \text{ (lumi)}$
$\sigma_{2e2\mu}^{fid}$	$15.9^{+1.1}_{-1.1} \text{ (stat)} ^{+0.5}_{-0.4} \text{ (syst)} ^{+0.5}_{-0.4} \text{ (lumi)}$	13.7 ± 1.2	SM Predictions	65 ± 4

Cross sections in the extended phase-space

Fiducial cross sections

Differential cross sections

- Differential cross sections are extracted via the unfolding procedure
 - Convert the measured distributions into the underlying true distributions enabling comparisons with theoretical predictions

Predictions are the sum of the qq \rightarrow ZZ and gg \rightarrow (H \rightarrow)ZZ processes:

non-resonant gg: LO

on-shell Higgs and qq productions: NNLO QCD and the NLO EW

Determination of gg signal strength

- LO Predictions on non-resonant gg→ZZ 4l process
- Measure the non-resonant gg→ZZ 4l signal strength with respect to LO prediction from data:
 - Using events in the high mass region: $m_{41} > 180 \text{ GeV}$
 - Signal strength: $\mu_{gg} = \sigma(data)/\sigma(LO)$
- A likelihood fit on m_{4l} is performed to extract μ_{gg} :
 - Contribution from non-ggZZ process is fixed to the best theory knowledge
- Measured result:

$$\mu_{gg} = 2.4 \pm 1.0 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 0.8 (\text{theory})$$

Post-fit m₄₁ spectrum

Summary

- The inclusive 4l production cross sections are measured in ATLAS at 8
 TeV with 20.3 fb⁻¹ data
 - In fiducial and extended phase-space
 - Unfolded distributions as function of m_{4l} and $p_{T}(4l)$

```
Cross Section in the extended phase space [fb]

Combined \sigma_{4\ell}^{ext-PS} 73^{+4}_{-4} (stat) ^{+4}_{-4} (syst) ^{+2}_{-2} (lumi)

SM Predictions 65 ± 4
```

- First determination of the signal strength of the gluon-gluon fusion component in mass region above 180 GeV (with respect to the LO prediction)
 - $-\mu_{gg} = 2.4 \pm 1.0 \text{(stat.)} \pm 0.5 \text{(syst.)} \pm 0.8 \text{(theory)}$

see more details at:

ATLAS-CONF-2015-031

Paper will come out shortly

14

$ZZ \rightarrow 4l$ candidate at 13 TeV (1)

ZZ→eeμμ

 $m(ee) = 92 \text{ GeV}, m(\mu\mu) = 90 \text{ GeV}, m(ee\mu\mu) = 305 \text{ GeV}$

<u>More</u> details

$ZZ \rightarrow 4l$ candidate at 13 TeV (2)

ZZ→μμee

 $m(\mu\mu) = 94 \text{ GeV}, m(ee) = 86 \text{ GeV}, m(ee\mu\mu) = 191 \text{ GeV}$

More details

backup

Fiducial phase-space

Lepton selection

Muons: $p_{\rm T} > 6 \text{ GeV}, |\eta| < 2.7$

Electrons: $p_T > 7 \text{ GeV}, |\eta| < 2.5$

Lepton pairing

Leading pair: SFOS lepton pair with

smallest $|m_Z - m_{\ell\ell}|$

Subleading pair: The remaining SFOS

with the largest $m_{\ell\ell}$

For both pairs: $p_T^{\ell^+\ell^-} > 2 \text{ GeV}$

Event selection

Lepton kinematics: $p_T > 20, 15, 10(8 if \mu) \text{ GeV}$

Mass requirements: $50 < m_{12} < 120 \text{ GeV}$

 $12 < m_{34} < 120 \text{ GeV}$

Lepton separation: $\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$

for same- (different-)

flavor leptons

 J/ψ veto: $m(\ell_i^+, \ell_j^-) > 5 \text{ GeV}$

4 ℓ mass range: 80 < $m_{4\ell}$ < 1000 GeV

Detailed theory predictions

	Extended pha	ase space [fb]	Fiducial volume [fb]		
$m_{4\ell}$ [GeV]	80-1000	180-1000	80-1000	180-1000	
qq (NLO)	60.4 ± 3.6	24.7 ± 1.5	25.5 ± 1.5	19.1 ± 1.1	
qq (NNLO)	61.2 ± 3.7	25.5 ± 1.5	26.2 ± 1.6	19.8 ± 1.2	
gg (LO)	1.8 ± 0.8	1.6 ± 0.7	1.4 ± 0.6	1.3 ± 0.6	
on-shell ggH	1.5 ± 0.2	0	1.1 ± 0.2	0	
others	0.44 ± 0.03	0.20 ± 0.01	0.34 ± 0.02	0.18 ± 0.01	

The "others" listed in the table include on-shell VBF-H, VH, ttH and off-shell VBF-H, VBF-ZZ and interference.

Detailed expectations of background

Expectations for the different background processes considered in this analysis

Process/Channel	4e	2e2μ	4μ
$t\bar{t}$	0.45 ± 0.24	1.3 ± 0.45	0.68 ± 0.19
Z + jets	0.60 ± 0.29	6.3 ± 1.4	5.3 ± 1.5
WZ	0.78 ± 0.11	1.31 ± 0.15	0.69 ± 0.11
Ζγ	0.41 ± 0.13	1.34 ± 0.24	0
$t\bar{t}Z$	0.51 ± 0.15	1.48 ± 0.45	0.96 ± 0.32
VVV (V=W, Z)	0.22 ± 0.07	0.51 ± 0.16	0.35 ± 0.11
tZ	0.11 ± 0.02	0.26 ± 0.05	0.23 ± 0.05
ZH	0.45 ± 0.10	0.95 ± 0.10	0.62 ± 0.08
DPI	0.06 ± 0.06	0.19 ± 0.19	0.14 ± 0.14

Cross sections and uncertainties

	Fiducial Cross Section [fb]	SM Predictions [fb]
σ_{4e}^{fid}	$7.4^{+0.9}_{-0.8}$ (stat) $^{+0.4}_{-0.3}$ (syst) $^{+0.2}_{-0.2}$ (lumi)	6.9 ± 0.6
$\sigma^{fid}_{4\mu}$	$8.7^{+0.8}_{-0.7}$ (stat) $^{+0.2}_{-0.2}$ (syst) $^{+0.3}_{-0.2}$ (lumi)	8.3 ± 0.7
$\sigma^{fid}_{2e2\mu}$	$15.9^{+1.1}_{-1.1}$ (stat) $^{+0.5}_{-0.4}$ (syst) $^{+0.5}_{-0.4}$ (lumi)	13.7 ± 1.2

	Cross Section in the extended phase space [fb]	SM Predictions [fb]
σ_{4e}^{ext-PS}	$17.8^{+2.1}_{-2.0}$ (stat) $^{+1.5}_{-1.1}$ (syst) $^{+0.5}_{-0.5}$ (lumi)	16.4 ± 1.4
$\sigma^{ext-PS}_{4\mu}$	$17.3^{+1.5}_{-1.4}$ (stat) $^{+0.9}_{-0.7}$ (syst) $^{+0.5}_{-0.5}$ (lumi)	16.4 ± 1.4
Combined $\sigma_{4e+4\mu}^{ext-PS}$	$35.0^{+2.4}_{-2.3}$ (stat) $^{+1.9}_{-1.5}$ (syst) $^{+1.1}_{-1.0}$ (lumi)	32.9 ± 1.9
$\sigma^{ext-PS}_{2e2\mu}$	$37.7^{+2.7}_{-2.6} \text{ (stat)} ^{+2.5}_{-2.0} \text{ (syst)} ^{+1.1}_{-1.1} \text{ (lumi)}$	32.1 ± 2.0
Combined $\sigma_{4\ell}^{ext-PS}$	$73^{+4}_{-4} \text{ (stat) }^{+4}_{-4} \text{ (syst) }^{+2}_{-2} \text{ (lumi)}$	65 ± 4

m_{4l} [GeV]	80-100	100-120	120-130	130-150	150-180	180-200	200-240	240-300	300-400	400-1000
$d\sigma_{4\ell}/dm_{4\ell}$ [ab/GeV]	173	22.8	243	65.1	66.4	220	198	89.6	33.4	2.14
Total Unc. [ab/GeV]	28	10.4	42	15.2	10.7	25	17	9.6	4.5	0.49
Stat. Unc. [ab/GeV]	27	10.2	41	14.9	10.5	24	16	9.4	4.4	0.48
Syst. Unc. [ab/GeV]	6	2.4	9	3.2	2.2	5	4	1.9	0.7	0.05