Di-boson production measurements
with ATLAS detector
On behalf of the ATLAS Collaboration

Introduction

$W\gamma, Z\gamma$ cross section

WZ, ZZ cross section

$WW+WZ$ semi-leptonic

WW cross section

VBF/VBS
See talk N.L. Martinez

aTGC

Summary

$WZ \rightarrow 3l\nu$

Laurent Chevalier
CEA-Saclay, eps-hep 2015, Vienna 22-29 July
LHC measurements → Standard Model: almost perfect?

Introduction

- $W\gamma, Z\gamma$ cross section
- WZ, ZZ cross section
- $WW+WZ$ semi-leptonic
- WW cross section
- VBF/VBS
 - See talk
 - N.L. Martinez

Summary

14 orders of magnitude

Figure

- ATLAS Preliminary
 - Run 1 $\sqrt{s} = 7, 8$ TeV
 - $LHC pp \sqrt{s} = 7$ TeV
 - Theory
 - Observed $4.5 - 4.9$ fb$^{-1}$
 - $LHC pp \sqrt{s} = 8$ TeV
 - Theory
 - Observed 20.3 fb$^{-1}$

- σ [pb]
- $0.1 < p_T < 2$ TeV
- $0.3 < m_{jj} < 5$ TeV
- $n_j \geq 0$ 35 pb$^{-1}$
- $n_j \geq 1$
- $n_j \geq 2$
- $n_j \geq 3$
- $n_j \geq 4$
- $n_j \geq 5$
- $n_j \geq 6$
- $n_j \geq 7$
- $n_j \geq 8$
- Total $ggF H \rightarrow WW$
- $H \rightarrow WW$
- $H \rightarrow \gamma \gamma$
- $W + Z$ total
- $W + ZZ$ total
- $t\bar{t}W$ total
- $t\bar{t}Z$ total
- $Z\gamma$ total
- $W\gamma$ total
- W^+W^- total
- $WW+ZZ$ total

→ Precise measurements
→ Anomalous coupling

LHC pp $\sqrt{s} = 7$ TeV
- Theory
- Observed 4.5 – 4.9 fb$^{-1}$

LHC pp $\sqrt{s} = 8$ TeV
- Theory
- Observed 20.3 fb$^{-1}$

Summary
SM

Non-Abelian structure of $SU(2)_L \times U(1)_Y$

allow TGC (charged only) & QGC (charged only)

EFT

Λ: scale of new physics

$O_i^{(d)}$: new operators of higher dimensions (d)

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_d \sum_i \frac{c_i^{(d)}}{\Lambda^{d-4}} O_i^{(d)}$$

=> Modify differential and total cross sections
Wγ & Zγ cross sections at 7 TeV

Wγ, Zγ cross section

Wγ/Zγ → ℓνγ, ℓℓγ, ννγ
- high E_T isolated photon
- high p_T isolated lepton
- $\Delta R_{(\text{lepton, photon})} > 0.7$

BKG
- W/Z+jets
- $γ$+jets
- $W → eν$

Remarks:
- $Zγ$ fair agreement
- $Wγ$ measurement above NLO
- NNLO QCD corrections are needed (see next slide)
Introduction

Wγ & Zγ cross sections at 7 TeV

NNLO QCD corrections are needed

- **Wγ**: arXiv:1407.1618v1 [hep-ph]

Graph

- pp→lνγ+X, √s=7 TeV
- MSTW2008

Legend

- **ATLAS**
- **NLO**
- **NNLO**

Summary

- VBF/VBS
- See talk
- N.L. Martinez

aTGC
WZ & ZZ cross sections at 7 and 8 TeV

Introduction

Wγ,Zγ cross section

WZ, ZZ cross section

WW+WZ semi-leptonic

WW cross section

VBF/VBS
See talk N.L. Martinez

aTGC

Summary

ZZ → 4l
• 4 high pT leptons
• bkg negligible

Run Number: 183602, Event Number: 282919
Date: 2011-06-18, 06:36:40 CET

• ATLAS-CONF-2014-033
• ATLAS-CONF-2013-020
• JHEP03(2013)128
WZ & ZZ cross sections at 7 and 8 TeV

WZ → lνll
- 3 high p_T & isolated leptons
- $E_{T}^{miss} > 25$ GeV
- 66 GeV $< M_{Z→ll} < 116$ GeV

BKG
- Z+jets ($\sim 15\%$): data driven
- ZZ ($\sim 5\%$): from MC
- Top ($\sim 4\%$): data driven
- $W/Z+\gamma$ ($\sim 3\%$): from MC

ZZ → llll
- 4 high p_T leptons
- BKG negligible

ZZ → lllν (7 TeV only)
- Axial $E_{T}^{miss} > 80$ GeV

BKG
- WZ ($\sim 20\%$): from MC
- WW+Top ($\sim 16\%$): data driven

Introduction

Wγ, Zγ cross section

WZ, ZZ cross section

WW+ZZ semi-leptonic

WW cross section

VBF/VBS

See talk N.L. Martinez

aTGC

Summary
WW + WZ in semi-leptonic mode at 7 TeV

WW+WZ→lvjj
- high p_T isolated lepton
- E_{miss}^τ cuts

BKG
- $W/Z+\text{jets}$ (~89%) : data driven
- multi-jets (~5%) : data driven
- Top (~4%) : from MC

- **All contributions including TGC, observed with a 3.4 σ confidence**
- **SM consistent**

Introduction

$W\gamma, Z\gamma$ cross section

WZ, ZZ cross section

WW+WZ semi-leptonic

WW cross section

VBF/VBS

See talk N.L. Martinez

Summary

- JHEP01(2015)049
- arXiv:1410.7238
WW cross section at 8 TeV

- **WW → lνlν**
 - 2 isolated high p_T leptons (opp. charge)
 - E_{miss}
 - Hard jet veto (reject tt & single-top)

Introduction

Wγ, Zγ cross section

WZ, ZZ cross section

WW + WZ semi-leptonic

WW cross section

VBF/VBS

See talk N.L. Martinez

Summary

ATLAS-CONF-2014-033
WW cross section at 8 TeV

WW→lνlν (in 0-jet bin)
- 2 isolated high p^T leptons (opp. charge)
- E_{miss}^T (45, 45, 25 GeV: ee, eµ, µµ)
- hard jet veto (reject tt & single-top)

BKG
- Top (~15%)
- W+jets (~5%)
- Drell-Yan (~5%)

Summary

- Whatever the pdf chosen
 - CT10, MSTW2008,...
- NNLO corrections: up to 10%
 - See arXiv:1408.5243
- Re-summation at large logs partially explain excess → arXiv:
 - 1407.4537, 1407.4481
 - 1507.02565v1

$\sim 2.1 \sigma$ higher than SM
Introduction

- **$W\gamma, Z\gamma$ cross section**
- **WZ, ZZ cross section**
- **$WW+WZ$ semi-leptonic**
- **WW cross section**

Summary

See talk N.L.Martinez

VBF/VBS

- Run Number: 207490
- Event Number: 33152138
- Date: 2012-07-26, 05:16:35 CET

- **Muon**: blue
- **Cells**: Tile, EM, FCal, HEC

Topologies

VBF/VBS

See talk N.L.Martinez

ATLAS

- Data 2012
- Syst. Uncertainty
- $WWjj$ Electroweak
- $WWjj$ Strong
- Prompt
- Conversions
- Other non-prompt

8TeV

$|\Delta y| > 2.4$

Pseudo-Rapidity between the 2 jets

Topology: forward jets

PRL 113, 141803 (2014)
aTGC

Anomalous couplings:
- increase cross sections and modification of kinematic distributions
- Anomalous effect from beyond SM
- physics can be modelled (SM+higher dimension operators)
Summary of cross section

Di-boson in ATLAS:

- **$W\gamma, Z\gamma$ cross section at 7 TeV (4.6fb$^{-1}$, NNLO)**
 - $W\gamma \rightarrow l\nu\gamma$: 2.77 ± 0.03 (stat) ± 0.33 (syst) ± 0.14 (lumi)
 - $Z\gamma \rightarrow ll\gamma$: 1.31 ± 0.02 (stat) ± 0.11 (syst) ± 0.05 (lumi)

- **WZ cross-section**
 - 7 TeV: 4.6fb$^{-1}$ $19.0^{+1.4}_{-1.3}$ (stat) ± 0.9 (syst) ± 0.4 (lumi)
 - 8 TeV: 13.0fb$^{-1}$ $20.3^{+0.8}_{-0.7}$ (stat) $^{+1.2}_{-1.1}$ (syst) $^{+0.7}_{-0.6}$ (lumi)

- **ZZ cross-section**
 - 7 TeV: 4.6fb$^{-1}$ 6.7 ± 0.7 (stat) $^{+0.4}_{-0.3}$ (syst) ± 0.3 (lumi)
 - 8 TeV: 20.3fb$^{-1}$ $7.1^{+0.5}_{-0.4}$ (stat) ± 0.3 (syst) ± 0.2 (lumi)

- **WW+WZ semi-leptonic**
 - 7 TeV: 4.6fb$^{-1}$ $68. \pm 7$ (stat) ± 19 (syst)

- **WW cross-section**
 - 7 TeV: 4.6fb$^{-1}$ 51.9 ± 2.0 (stat) ± 3.9 (syst) ± 2.0 (lumi)
 - 8 TeV: 20.3fb$^{-1}$ 71.4 ± 1.2 (stat) $^{+5.0}_{-4.4}$ (syst) $^{+2.2}_{-2.1}$ (lumi)

- ~2.1 σ higher than SM

- aTGC
 - No deviation

Introduction

Wγ, Zγ cross section

WZ, ZZ cross section

WW+WZ semi-leptonic

WW cross section

VBF/VBS

See talk N.L. Martinez

aTGC

Summary

Including Higgs
Summary

- Run-1 allowed to explore di-boson production processes: **SM consistent**

- Most di-boson measurements are systematically limited.

- Tri-boson and VBS processes are accessible.

- Promising Run-2 analysis!
backup
Signature

- Leptons/photons
 - High-pT
 - Isolated
- Z Bosons
 - Invariant mass in windows around the Z pole
- W Bosons
 - Large Missing ET to account for the neutrino
 - Transverse mass selection

Background

Estimated with data driven methods
- V+jets
 - Genuine high-pt leptons from boson decay
 - Leptons from heavy flavour decays
 - Jets misidentified as leptons/photons
 - Particles outside the detector acceptance => Missing ET
- tt(bar) and single top
 - Prompt isolated leptons from W leptons
 - Large Missing ET
Number of data events

Number of background events

Luminosity

Branching Ratio

Efficiency corrections

Acceptance

\[\sigma_{fid} = \frac{N_{data} - N_{bkg}}{C \cdot \int L dt} \]

\[\sigma_{tot} = \frac{N_{data} - N_{bkg}}{A \cdot C \cdot BR \cdot \int L dt} \]

\[A = \frac{N_{MC, gen}^{fid}}{N_{MC, gen}^{tot}} \]

\[C = \frac{N_{\text{Selected}}^{Reco}}{N_{MC, gen}^{fid}} \]
Introduction

W_γ, Z_γ

cross section

WZ, ZZ

cross section

$WW + WZ$

semi-leptonic

WW

cross section

VBF/VBS

See talk

N.L. Martinez

 Summary

aTGC

$
\Delta g^Z_1 = \Delta \kappa_Z + \tan^2 \theta_W \Delta \kappa_\gamma$

$$
\begin{align*}
\mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{SM}} + \sum_d \sum_i \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)} \\
\mathcal{L} &= ig_{WWV} \left(g^V_1 (W^\mu_\nu W^-_{\mu\nu} - W^+_{\mu\nu} W^-_{\mu\nu}) V^\nu + \kappa_V W^\mu_\nu W^-_{\mu\nu} V^\nu + \frac{\lambda_V}{M^2_W} W^\mu_\nu W^-_{\mu\nu} V^\nu \right) \\
&+ ig^V_4 W^+_{\mu\nu} V^-_{\nu\rho} (\partial^\rho V^\nu + \partial^\nu V^\rho) - ig^V_5 \epsilon^{\mu\nu\rho\sigma} (W^+_{\mu\nu \rho} W^-_{\rho\sigma} - \partial_\rho W^+_{\mu\nu} W^-_{\rho\sigma}) V^\nu \\
&+ \tilde{\kappa}_V W^+_{\mu\nu} \tilde{W}^\mu_{\nu\rho} + \frac{\tilde{\lambda}_V}{M^2_W} W^+_{\mu\nu} W^-_{\mu\nu} \tilde{V}^\nu_{\rho} \tilde{V}^\mu_{\rho} \right),
\end{align*}
$$

EFT

SM

aTGC

\mathcal{L}_{SM}

W

TGC

$Z \gamma$

W

$\Delta g^Z_1 = \Delta \kappa_Z + \tan^2 \theta_W \Delta \kappa_\gamma$

$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2}$

$\kappa_\gamma = 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$

$\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$

$\lambda_\gamma = \lambda_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$

$g_4^V = g_5^V = 0$

$\tilde{\kappa}_\gamma = c_{WW} \frac{m_W^2}{2\Lambda^2}$

$\tilde{\kappa}_Z = -c_W \tan^2 \theta_W \frac{m_W^2}{2\Lambda^2}$

$\tilde{\lambda}_\gamma = \tilde{\lambda}_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$
Wγ & Zγ cross sections at 7 TeV

Wγ / Zγ → lνγ, llγ, ννγ
- Single lepton or photon triggers:
 - Electrons: 20-22 GeV
 - Muons: 18 GeV
 - Photons: 80 GeV
- |d0|/σd0 < 10(3) e(μ)
- |z0| < 1mm
- Calorimeter isolation in cone ΔR < 0.3 less than 6 GeV (e)
- pT isolation in cone ΔR < 0.3 less than 15% of the μ pT
- Wγ modelled with ALPGEN (CTEQ6L1)
- Zγ, ννγ modelled with Sherpa (CTEQ6.6M)

<table>
<thead>
<tr>
<th>Cuts</th>
<th>pp → ℓνγ</th>
<th>pp → ℓ⁺ℓ⁻γ</th>
<th>pp → ννγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton</td>
<td>pT > 25 GeV</td>
<td>pT > 25 GeV</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$W\gamma$ & $Z\gamma$ cross sections at 7 TeV

pb (data)

Di-boson in ATLAS:

- $W\gamma, Z\gamma$ cross section at 7 TeV (4.6fb⁻¹)
 - $W\gamma \rightarrow l\nu\gamma$: 2.77 ± 0.03 (stat) ± 0.33 (syst) ± 0.14 (lumi) 1.96 ± 0.17
 - $Z\gamma \rightarrow ll\gamma$: 1.31 ± 0.02 (stat) ± 0.11 (syst) ± 0.05 (lumi) 1.18 ± 0.05
 - $Z\gamma \rightarrow l\nu\nu$: 0.133 ± 0.01 (stat) ± 0.02 (syst) ± 0.05 (lumi) 0.156 ± 0.012

Summary

pb (theory)
WZ & ZZ cross sections at 7 and 8 TeV

Introduction

$W\gamma, Z\gamma$ cross section

WZ, ZZ cross section

$WW+WZ$ semi-leptonic

WW cross section

VBF/VBS
See talk
N.L. Martinez

Summary

Backgrounds to ZZ\rightarrowll$\nu\nu$:

- $WZ\rightarrow$llll: MC based, validated using trilepton control region
- WW/top/Z$\tau\tau$: real E_T^{miss}, data driven, flavor symmetry
- Z+jets: fake E_T^{miss}, estimated with γ+jets events
- W+jets/QCD: fake lepton, matrix method and fake-factor method
- Others: ZZ\rightarrow4l
WZ & ZZ cross sections at 7 and 8 TeV

Electrons

Central Electron Selection:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>$\ell^+\ell^-\nu\bar{\nu}$ final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. e: Type</td>
<td>author==1 or 3</td>
</tr>
<tr>
<td>2. e: Quality</td>
<td>(OQ AND 1446 == 0)</td>
</tr>
<tr>
<td>3. e: ID cut</td>
<td>Medium++</td>
</tr>
<tr>
<td>4. e: η</td>
<td>$</td>
</tr>
<tr>
<td>5. e: E_T</td>
<td>$E_T > 25$ GeV</td>
</tr>
<tr>
<td>6. e: $z_0 \ast \sin(\theta)$</td>
<td>$</td>
</tr>
<tr>
<td>7. e: d_0</td>
<td>$</td>
</tr>
<tr>
<td>8. e: Track isolation</td>
<td>$\Sigma p_T(\Delta R < 0.2)/p_T < 15%$</td>
</tr>
<tr>
<td>9. e: Calo isolation</td>
<td>$\Sigma E_T(\Delta R < 0.2)/E_T < 15%$</td>
</tr>
</tbody>
</table>
| 10. e: Overlap removal | a) Remove e if $\Delta R < 0.1$ from μ
 b) Remove lowest E_T e in $\Delta R < 0.1$ from another e |

Muons

Standard Muons

<table>
<thead>
<tr>
<th>Requirement</th>
<th>$\ell^+\ell^-\nu\bar{\nu}$ final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. μ: type</td>
<td>Combined, “loose” STACO muons,</td>
</tr>
<tr>
<td>2. μ: p_T and η</td>
<td>$p_T > 25$ GeV, $</td>
</tr>
<tr>
<td>3. μ: ID hits</td>
<td>MCP recommendations</td>
</tr>
<tr>
<td>4. μ: $z_0 \ast \sin(\theta)$</td>
<td>$</td>
</tr>
<tr>
<td>5. μ: d_0</td>
<td>$</td>
</tr>
<tr>
<td>6. μ: track iso</td>
<td>$\Sigma p_T(\Delta R < 0.2)/p_T < 15%$</td>
</tr>
<tr>
<td>7. μ: calo iso</td>
<td>$\Sigma E_T(\Delta R < 0.2)/E_T < 15%$</td>
</tr>
</tbody>
</table>

Jets

AntiKT4LCTopo Jets

<table>
<thead>
<tr>
<th>Requirement</th>
<th>$\ell^+\ell^-\nu\bar{\nu}$ final state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. jet: p_T and η</td>
<td>$p_T > 25$ GeV, $</td>
</tr>
<tr>
<td>2. jet: Bad Jets</td>
<td>Remove events with "LooserBad" jets</td>
</tr>
<tr>
<td>3. jet: JVF</td>
<td>$</td>
</tr>
<tr>
<td>4. jet: Overlap removal</td>
<td>Remove jets if overlapped with selected leptons, $\Delta R < 0.3$</td>
</tr>
</tbody>
</table>

MET: RefFinal
WZ & ZZ cross sections at 7 and 8 TeV

Total phase-space: $66 < m_{Z1}, m_{Z2} < 116$ GeV

Fiducial phase-space:

- 2 pairs of opposite sign same flavor leptons
- $p_T^\ell > 7$ GeV
- $66 < m_Z < 116$ GeV
- $\Delta R(\ell, \ell) > 0.2$ (all leptons)
- 4μ: $|\eta_\mu| < 2.7$
- $2e2\mu$:
 - $|\eta_\mu| < 2.7$
 - $|\eta_e| < 2.5$ (both e), OR $|\eta_{e_1}| < 2.5$ and $|\eta_{e_2}| < 4.9$
- $4e$:
 - $|\eta_e| < 2.5$ (all e), OR $|\eta_e| < 2.5$ (3e) and $|\eta_{e_4}| < 4.9$
- 2 same-flavor opposite sign leptons
- 76 GeV < m_Z < 106 GeV
- $p_T^\ell > 25$ GeV
- Axial-$E_T^{\text{miss}} > 90$ GeV
- $\frac{|p_T^{V\bar{V}} - p_T^Z|}{p_T^Z} < 0.4$
- $|\eta_\ell| < 2.5$
- No jets with $p_T > 25$ GeV and $|\eta| < 4.5$ (remove jets with electrons $\Delta R = 0.3$)
- $\Delta R(\ell, \ell) > 0.3$
WW & WZ in semi-leptonic mode at 7 TeV

WW/WZ→lνjj
- Exactly one high-pT isolated lepton pT>25 GeV
- \(|d0 / σ(d0)| < 3\) (10) for muons (electrons)
- \(|z0| < 1\) mm
- ETmiss > 30 GeV, mT,W > 40 GeV
- Exactly two jets with pT > 25 GeV and |η| < 2.8 (pT > 30 GeV for the leading jet)
- Azimuthal angular separation between the leading jet pT and the Etmiss vectors must fulfil |Δφ(ETmiss,j1)| > 0.8
- |Δη(j1,j2)| < 1.5, ΔR(j1, j2) > 0.7 if pT of the dijet system is less than 250 GeV
- 25 < mjj < 250 GeV
WW production at 8 TeV

WW→lνlν (in 0-jet bin)

- Lowest order: \(W±W± + 2\)jets, there is no SM inclusive \(W±W±\)
- for EW+strong measurement ("inclusive signal phase space")
 - exactly 2 high \(p_T\) same-sign leptons with \(p_T > 25\) GeV in \(|\eta| < 2.5\)
 - \(m_{ll} > 20\) GeV, \(\Delta R_{ll} > 0.3\)
 - \(\geq 2\) jets with \(p_T > 30\) GeV, \(|\eta| < 4.5\)
 - ETmiss > 40 GeV (from W decays)
 - veto events containing b-jets
 - Z-veto in ee channel: \(|m_{ee} - m_Z| > 10\) GeV
 - \(m_{jj} > 500\) GeV
- for EW-only measurement ("VBS signal phase space")
 - additional cut on \(|\Delta Y_{jj}| > 2.4\)
WW production at 8 TeV

WW→lνlν (in 0-jet bin)
- 2 isolated high p_T leptons (opp. charge)
- E_{miss} (45,45,25 GeV: ee,eμ,\muμ)
- hard jet veto (reject tt & single-top)
- Z veto (15,10 GeV: ee, \muμ)

BKG
- Top (~15%)
- W+jets (~5%)
- Drell-Yan (~5%)

Summary
- NNLO corrections: up to 10% (arXiv:1408.5243)
- re summation at large logs: partially explain excess (arXiv:1407.4537,1407.4481,1507.02565v1)
WW production at 7 & 8 TeV

CMS \[60.1 \pm 0.9 \text{(stat.)} \pm 3.2 \text{(exp.)} \pm 3.1 \text{(th.)} \pm 1.6 \text{(lum.)} \text{ pb.} \]

ATLAS \[71.4^{+1.2}_{-1.2} \text{(stat)} +^{5.0}_{-4.4} \text{(syst)} +^{2.2}_{-2.1} \text{(lumi)} \text{ pb} \]

ATLAS and CMS in agreement.

Theoretical predictions cited:
- 59.8 ± 1.2 pb (CMS)
- NNLO "qqbar+qq" (no H)
- 58.7 ± 2.9 pb (ATLAS)

NLO qqbar + LO gg + NNLO H
Vector Boson Scattering topology: **unitary issue**
Pair of same charge W with 2 jets
Quartic Gauge Vertex contribution
W in leptonic mode: \(W \rightarrow l\nu \) \((l=e,\mu)\)

Phys. Rev. Lett. 113, 141803
Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO
Massimiliano Grazzini, Stefan Kallweit, Dirk Rathlev, Marius Wiesemann

$W^+W^- @ 8$ TeV

Veto efficiency vs. p_T veto [GeV]

Ratio to NNLL vs. p_T veto [GeV]