Investigating Dark Energy and Gravitation at cosmological scales

Alain Blanchard

Vienna, July 23th, 2015

Alain Blanchard Investigating dark gravity

Successes of Λ CDM model

Alain Blanchard Investigating dark gravity

æ

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Λ CDM model remarkable success

Λ CDM model remarkable success

Λ CDM model remarkable success

Alain Blanchard Investigating dark gravity

Table 4. Parameter 68% confidence limits for the base ACDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext," BAO+JLA+H₀). Nuisance parameters are not listed for brevity (they can be found in the *Planck Legacy Archive* tables), but the last three parameters give a summary measure of the total foreground amplitude (in μK^2) at $\ell = 2000$ for the three high- ℓ temperature spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_b h^2$).

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_b h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_c h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
1000 _{MC}	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> ₈	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
<i>H</i> ₀	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
$\Omega_{\Lambda} \ldots \ldots \ldots \ldots$	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_{\rm m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
<i>σ</i> ₈	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086

Table 5. Constraints on 1-parameter extensions to the base Λ CDM model for combinations of *Planck* power spectra, *Planck* lensing, and external data (BAO+JLA+H₀, denoted "ext"). Note that we quote 95 % limits here.

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
Ωκ	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.011}$	$-0.004^{+0.015}_{-0.015}$	0.0008+0.0040
Σm_{ν} [eV]	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	< 0.194
N _{eff}	$3.13_{-0.63}^{+0.64}$	$3.13^{+0.62}_{-0.61}$	$3.15_{-0.40}^{+0.41}$	$2.99^{+0.41}_{-0.39}$	$2.94^{+0.38}_{-0.38}$	3.04+0.33
<i>Y</i> _p	0.252+0.041	0.251+0.040	0.251+0.035	0.250+0.026	0.247+0.026	0.249+0.025
$dn_s/d\ln k$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
r _{0.002}	< 0.103	< 0.114	< 0.114	< 0.0987	< 0.112	< 0.113
<i>w</i>	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

Alain Blanchard

Table 4. Parameter 68% confidence limits for the base ACDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext," BAO+JLA+H₀). Nuisance parameters are not listed for brevity (they can be found in the *Planck Legacy Archive* tables), but the last three parameters give a summary measure of the total foreground amplitude (in μK^2) at $\ell = 2000$ for the three high- ℓ temperature spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_b h^2$).

Parameter	TT+lowP 68 % Plants	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_b h^2$	0.0222 ± 0.0002.	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_c h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
1000 _{MC}	1.040 5 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.013 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.08. ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> ₈	0.9655 ± 2.00 2	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
<i>H</i> ₀	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
$\Omega_{\Lambda} \ldots \ldots \ldots \ldots \ldots$	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_m h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
<i>σ</i> ₈	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086

Table 5. Constraints on 1-parameter extensions to the base Λ CDM model for combinations of *Planck* power spectra, *Planck* lensing, and external data (BAO+JLA+H₀, denoted "ext"). Note that we quote 95 % limits here.

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
Ω _K	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.011}$	-0.004+0.015	0.0008+0.0040
Σm_{y} [eV]	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	< 0.194
N _{eff}	$3.13_{-0.63}^{+0.64}$	$3.13^{+0.62}_{-0.61}$	$3.15_{-0.40}^{+0.41}$	$2.99^{+0.41}_{-0.39}$	$2.94^{+0.38}_{-0.38}$	3.04+0.33
<i>Y</i> _p	0.252+0.041	0.251+0.040	0.251+0.035	0.250+0.026	0.247+0.026	0.249+0.025
$dn_s/d\ln k$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
r _{0.002}	< 0.103	< 0.114	< 0.114	< 0.0987	< 0.112	< 0.113
<i>w</i>	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

Alain Blanchard

Table 4. Parameter 68% confidence limits for the base ACDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext," BAO+JLA+H₀). Nuisance parameters are not listed for brevity (they can be found in the *Planck Legacy Archive* tables), but the last three parameters give a summary measure of the total foreground amplitude (in μK^2) at $\ell = 2000$ for the three high- ℓ temperature spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_b h^2$).

Parameter	TT+lowP 68 % Plants	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_b h^2$	0.0222 ± 0.0002.	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_c h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
1000 _{MC}	1.040 5 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.013 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.08. ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> ₈	0.9655 ± 2.00 2	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
<i>H</i> ₀	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
$\Omega_{\Lambda} \ldots \ldots \ldots \ldots \ldots$	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_m h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
<i>σ</i> ₈	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086

Table 5. Constraints on 1-parameter extensions to the base Λ CDM model for combinations of *Planck* power spectra, *Planck* lensing, and external data (BAO+JLA+H₀, denoted "ext"). Note that we quote 95 % limits here.

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
Ω _K	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.011}$	$-0.004^{+0.015}_{-0.015}$	0.0008+0.0040
Σm_{y} [eV]	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	< 0.194
N _{eff}	$3.13^{+0.64}_{-0.63}$	$3.13_{-0.61}^{+0.62}$	$3.15_{-0.40}^{+0.41}$	$2.99^{+0.41}_{-0.39}$	$2.94^{+0.38}_{-0.38}$	$3.04_{-0.33}^{+0.33}$
<i>Y</i> _p	$0.252^{+0.041}_{-0.042}$	$0.251^{+0.040}_{-0.039}$	$0.251^{+0.035}_{-0.036}$	0.250+0.026	$0.247^{+0.026}_{-0.027}$	$0.249^{+0.025}_{-0.026}$
$dn_s/d\ln k$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
<i>r</i> _{0.002}	0.102	< 0.114	< 0.114	< 0.0987	< 0.112	< 0.113
w	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

Alain Blanchard

Table 4. Parameter 68% confidence limits for the base ACDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext," BAO+JLA+H₀). Nuisance parameters are not listed for brevity (they can be found in the *Planck Legacy Archive* tables), but the last three parameters give a summary measure of the total foreground amplitude (in μK^2) at $\ell = 2000$ for the three high- ℓ temperature spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_b h^2$).

Parameter	TT+lowP 68 % Plants	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_b h^2$	0.0222 ± 0.0002.	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_c h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
1000 _{MC}	1.040 5 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.013 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.08. ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> ₈	0.9655 ± 2.00 2	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
<i>H</i> ₀	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
$\Omega_{\Lambda} \ldots \ldots \ldots \ldots \ldots$	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_m h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
<i>σ</i> ₈	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086

Table 5. Constraints on 1-parameter extensions to the base Λ CDM model for combinations of *Planck* power spectra, *Planck* lensing, and external data (BAO+JLA+H₀, denoted "ext"). Note that we quote 95 % limits here.

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
Ω _K	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.011}$	-0.004+0.015	0.0008+0.0040
Σm_{ν} [eV]	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	< 0.194
N _{eff}	$3.13^{+0.64}_{-0.63}$	$3.13^{+0.62}_{-0.61}$	$3.15^{+0.41}_{-0.40}$	$2.99^{+0.41}_{-0.39}$	$2.94_{-0.38}^{+0.38}$	$3.04_{-0.33}^{+0.33}$
<i>Y</i> _p	0.252+0.041	0.251+0.040	0.251+0.035	0.250+0.026	0.247+0.026	0.249+0.025
$dn_s/d\ln k$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
r _{0.002}	0.102	< 0.114	< 0.114	< 0.0987	< 0.112	0112
w	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

Alain Blanchard

Tightening down Dark Energy properties

・ロン ・四と ・ヨン ・ヨン

Э

Tightening down Dark Energy properties

Tools

• Laboratory experiments.

A (1) > A (2) > A

토 > 토

Tightening down Dark Energy properties

Tools

• Laboratory experiments. limited

Alain Blanchard Investigating dark gravity

• • = • • = •

- Laboratory experiments. limited
- Solar system test.

- Laboratory experiments. limited
- Solar system test. ...

▶ < Ξ >

- Laboratory experiments. limited
- Solar system test. ...
- Galactic level.

- Laboratory experiments. limited
- Solar system test. ...
- Galactic level. NL ...

- Laboratory experiments. limited
- Solar system test. ...
- Galactic level. NL ...
- Cosmological scales:

- Laboratory experiments. limited
- Solar system test. ...
- Galactic level. NL ...
- Cosmological scales:Let's go for it!
- Euclid! (red book : arXiv:1110.3193)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Astrophysical point of view

Testing cosmology at the background level

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Astrophysical point of view

Testing cosmology at the background level

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

▲圖 → ▲ 国 → ▲ 国 →

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO
• $H(z)$

▲圖 → ▲ 国 → ▲ 国 →

臣

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO
• $H(z)$
longitudinal BAO, \dot{z} , $t(z)$

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

longitudinal BAO, ż, t(z)

Testing cosmology at the (linear) perturbation level

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

Testing cosmology at the (linear) perturbation level

•
$$G(z)\delta(z)=G(z)\delta_0$$
 growth factor

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

Testing cosmology at the (linear) perturbation level

•
$$G(z)\delta(z) = G(z)\delta_0$$
 growth factor $rac{dln(G)}{dln(a)} \sim \Omega_m^{\gamma}(a)$

• • = • •

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

Testing cosmology at the (linear) perturbation level

•
$$G(z)\delta(z) = G(z)\delta_0$$
 growth factor
 $\frac{dln(G)}{dln(a)} \sim \Omega_m^{\gamma}(a)$
 γ is the growth index ($\gamma \sim 0.55$ in Λ CDN

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

Testing cosmology at the (linear) perturbation level

•
$$G(z)\delta(z) = G(z)\delta_0$$
 growth factor
 $\frac{dln(G)}{dln(a)} \sim \Omega_m^{\gamma}(a)$
 γ is the growth index ($\gamma \sim 0.55$ in Λ CDN
Weak Lensing,

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

Testing cosmology at the (linear) perturbation level

•
$$G(z)\delta(z) = G(z)\delta_0$$
 growth factor
 $\frac{dln(G)}{dln(a)} \sim \Omega_m^{\gamma}(a)$
 γ is the growth index ($\gamma \sim 0.55$ in Λ CDM)
Weak Lensing, RSD,

•
$$D(z) = \frac{1}{H_0 \Omega_K^{1/2}} S_K \left(H_0 \Omega_K^{1/2} \int_0^z \frac{dz}{H(z)} \right)$$

SNIa, CMB, tranversal BAO

Testing cosmology at the (linear) perturbation level

•
$$G(z)\delta(z) = G(z)\delta_0$$
 growth factor
 $\frac{dln(G)}{dln(a)} \sim \Omega_m^{\gamma}(a)$
 γ is the growth index ($\gamma \sim 0.55$ in Λ CDM)
Weak Lensing, RSD, Clusters

One comment about the contents... Friedmann-Lemaître equation:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho_m}{3} + \frac{8\pi G\rho_{DE}}{3} - \frac{kc^2}{R^2}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

One comment about the contents... Friedmann-Lemaître equation:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho_m}{3} + \frac{8\pi G\rho_{DE}}{3} - \frac{kc^2}{R^2}$$

The split between ρ_m and ρ_{DE} is not (gravitationally) testable (Kunz 2009)

One comment about the contents... Friedmann-Lemaître equation:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho_m}{3} + \frac{8\pi G\rho_{DE}}{3} - \frac{kc^2}{R^2}$$

The split between ρ_m and ρ_{DE} is not (gravitationally) testable (Kunz 2009) Just use it as a parametrization.

Precision cosmology area: curvature

Table 4. Parameter 68 % confidence limits for the base ACDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext," BAO+1LA+H₀). Nuisance parameters are not listed for brevity (they can be found in the *Planck Legacy Archive* tables), but the last three parameters give a summary measure of the total foreground amplitude (in μK^2) at $\ell = 2000$ for the three high- ℓ temperature spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_b h^2$).

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_{\rm b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
1000 _{MC}	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_{s})$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> ₈	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
<i>H</i> ₀	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
Ω _Λ	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
Ω _m	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{\rm m}h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_{\rm m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
σ ₈	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086

Table 5. Constraints on 1-parameter extensions to the base Λ CDM model for combinations of *Planck* power spectra, *Planck* lensing, and external data (BAO+JLA+H₀, denoted "ext"). Note that we quote 95 % limits here.

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
Ω _K	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.041}$	$-0.004^{+0.015}_{-0.015}$	0.0008+0.0040
Σm_{ν} [eV]	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	0.104
N _{eff}	3.13+0.64	3.13+0.62	$3.15_{-0.40}^{+0.41}$	$2.99^{+0.41}_{-0.39}$	2.94+0.38	3.04+0.33
<i>Y</i> _p	0.252+0.041	0.251+0.040	0.251+0.035	0.250+0.026	0.247+0.026	0.249+0.025
$dn_s/d\ln k$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
r _{0.002}	< 0.103	< 0.114	< 0.114	< 0.0987	< 0.112	< 0.113
w	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

Alain Blanchard

A Cosmological Test of GR at the background level Dynamic

One can derive dynamical equation for a(t) from Newtonian consideration

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

A Cosmological Test of GR at the background level Dynamic

One can derive dynamical equation for a(t) from Newtonian consideration

Newtonian dynamic:

$$\dot{a}^2 + K = rac{8\pi G}{3} \sum
ho a^2.$$

(see Mukhanov's book)

・ 同 ト ・ ヨ ト ・ ヨ ト

A Cosmological Test of GR at the background level Dynamic

One can derive dynamical equation for a(t) from Newtonian consideration

Newtonian dynamic:

$$\dot{a}^2 + K = \frac{8\pi G}{3} \sum \rho a^2.$$

(see Mukhanov's book)

General Relativity

$$K = c^2$$

SO

$$\Omega_k = 1. - \sum \Omega_{contents}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Testing GR at cosmological scales

Alain Blanchard Investigating dark gravity

→ < E > < E >

Testing GR at cosmological scales

so testing:

$$\Omega_k = 1. - \sum \Omega_{contents}$$

is testing GR on large scale at the background level

Testing GR at cosmological scales

so testing:

$$\Omega_k = 1. - \sum \Omega_{contents}$$

is testing GR on large scale at the background level

So we can define :

$$\Omega_{kgeo} = -\frac{k}{(a_0 H_0)^2}$$

and

$$\Omega_{kdyn} = 1. - \sum \Omega_{contents}$$

A B K

so testing:

$$\Omega_k = 1. - \sum \Omega_{contents}$$

is testing GR on large scale at the background level

So we can define :

$$\Omega_{kgeo} = -rac{k}{(a_0H_0)^2}$$

and

$$\Omega_{kdyn} = 1. - \sum \Omega_{contents}$$

and use SNIa, CMB, BAO to constrain these quantities. Yves Zolnierowski & AB, arXiv:1503.00111, Phys. Rev. D **91**, 083536 (2015)

With w = -1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

With Euclid (forecasting)

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

• We do not have (yet) a direct measurement of the curvature of the universe...

臣

- We do not have (yet) a direct measurement of the curvature of the universe...
- It is possible to test one prediction of GR relating curvature to contents

- We do not have (yet) a direct measurement of the curvature of the universe...
- It is possible to test one prediction of GR relating curvature to contents
- Euclid will allow to test gravity at cosmological scale in many ways, including this test

- We do not have (yet) a direct measurement of the curvature of the universe...
- It is possible to test one prediction of GR relating curvature to contents
- Euclid will allow to test gravity at cosmological scale in many ways, including this test
- This can/should be complemented by other data from cosmological relevance (CMB, *H*₀, *ż*, *t*(*z*), ...)

- We do not have (yet) a direct measurement of the curvature of the universe...
- It is possible to test one prediction of GR relating curvature to contents
- Euclid will allow to test gravity at cosmological scale in many ways, including this test
- This can/should be complemented by other data from cosmological relevance (CMB, *H*₀, *ż*, *t*(*z*), ...)

Thank You