Searches for highly ionizing particles in ATLAS and CMS

Antonio Policicchio
INFN Cosenza - CERN
ATLAS Collaboration
Introduction

• High-mass, long-lived charged particles predicted by various extensions of the Standard Model
• If such particles have a mass lighter than a few TeV they could be produced by the CERN LHC
• Massive particles with lifetime greater than $O(1)$ ns could be observed with the ATLAS and CMS detectors as high-momentum tracks with anomalously large rates of energy loss through ionization
• These particles could also be highly penetrating such that the fraction reaching the muon system of the detectors would be sizeable
 • The muon system could therefore be used to help in identification and in the measurement of the time-of-flight (TOF) of the particles
• In this talk results are presented of some specific BSM searches for high-mass, long-lived charged particles. Results are interpreted in terms of
 • the production of new particles with a fractional or multiple value of the charge of the electron
 • the production of high mass stable charged particles (HSCP), also reinterpreted in the context of supersymmetric scenarios that predict stable or pseudo-stable charged particles in the final state
 • the presence of magnetic monopoles
Multi-Charged Particles (MCP) in ATLAS

arXiv:1504.04188 submitted to EPJ C

- Search for long-lived highly ionizing heavy (mass in 50 - 1000 GeV) particles with high electric charges (|q|=2,3,4,5,6 e)
- “Blue-sky” search, but some models predict new particles with charge greater than one
 - Almost Commutative Geometry model (AC-leptons): extends SM by two heavy particles with |q|≥e
 - Walking Technicolor Model (techni-leptons): production of 3 particle pairs with q+e, q, q-e (|q|≥e)

- Analysis features
 - Long-lived particles → high p_T muon trigger or missing E_T trigger
 - Selection
 - muon-like particles with high ionization losses in Pixel, Transition Radiation Tracker (TRT) and muon precision chambers (MDT)
 - high fraction of TRT hits passing the high threshold, f_{HT}
 - Background estimation: ABCD method

- Results: no candidate events observed in data → exclusion limits assuming a Drell-Yan production cross-section

| |q| | Mass limits [GeV] |
|---|---|---|
| 2e | 50-660 |
| 3e | 50-740 |
| 4e | 50-780 |
| 5e | 50-785 |
| 6e | 50-760 |
Stable heavy charged particles in ATLAS

JHEP01 (2015) 068

- Search for heavy, charged, stable, slow-moving ($\beta < 1$) particles
- Analysis strategy
 - High p_T muon trigger or missing E_T trigger
 - Track information is used to calculate the candidate mass
 - p derived from the candidate track
 - β calculated from measured ToF (using muon system and calorimeter)
 - $\beta\gamma$ deduced from Pixel dE/dx
 - Background: high-p_T muons with large ionization, mis-measured β
 - Contribution estimated from data
 - Interpretations: stable sleptons, leptoSUSY, charginos, R-hadrons

<table>
<thead>
<tr>
<th>Search</th>
<th>Lower mass limit [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMSB sleptons</td>
<td></td>
</tr>
<tr>
<td>$\tan\beta$ = 10, 20, 30, 40, 50</td>
<td>440, 440, 430, 410, 385</td>
</tr>
<tr>
<td>direct $\tilde{\ell}$ production ($m_{\tilde{\ell}} - m_{\ell}$ = 2.7–9.3 GeV)</td>
<td>377–335</td>
</tr>
<tr>
<td>direct $\tilde{\tau}_1$ production</td>
<td>289</td>
</tr>
<tr>
<td>$\tilde{\chi}_1^0\tilde{\chi}_1^\pm$ decaying to stable $\tilde{\tau}_1$</td>
<td>537</td>
</tr>
<tr>
<td>LeptoSUSY</td>
<td></td>
</tr>
<tr>
<td>\tilde{g}, \tilde{g}</td>
<td>1500, 1360</td>
</tr>
<tr>
<td>Charginos</td>
<td></td>
</tr>
<tr>
<td>$\tilde{\chi}_1^\pm$</td>
<td>620</td>
</tr>
<tr>
<td>R-hadrons</td>
<td></td>
</tr>
<tr>
<td>$\tilde{g}, \tilde{b}, \tilde{t}$ (full-detector)</td>
<td>1270, 845 and 900</td>
</tr>
<tr>
<td>$\tilde{g}, \tilde{b}, \tilde{t}$ (MS-agnostic)</td>
<td>1260, 835 and 870</td>
</tr>
</tbody>
</table>
Updated searches using Pixel dE/dx only → extend sensitivity to lower lifetimes
Mass obtained by fitting energy loss and momentum to an empirical Bethe–Bloch distribution
Events selected by missing transverse energy trigger
Offline selection:
- track isolation (ΔR with respect to any other track > 0.25)
- electron veto
- high (>150 GeV) momentum
- high ionization (>MIP value)
- muon veto if particle is metastable with decay before the muon system

No events observed in data over the estimated background → lower limits on particles mass
Search for monopoles and stable particles with high electric charges in ATLAS

- Massive stable particles with very high electric charge predicted by several new physics models: theories of magnetic monopoles (carry magnetic charge g, $g = n \times g_D$, where $g_D = 68.5 e$), strange quark matter, Q-balls, stable microscopic black-hole remnants

- Signature to maximise the acceptance for particles predicted by the models (energy in 100 - 500 GeV): large localised energy deposit in the Electromagnetic calorimeter + a region of high ionisation density in the TRT (f_{TH})

- Event selection
 - dedicated trigger: EM calorimeter energy deposit with no energy after the first calorimeter layer + large f_{HT}
 - high f_{HT} matched to EM energy deposit
 - EM energy deposit dispersion (fraction of EM energy contained in the most energetic cells, w)
 - ABCD method used to determine the background from data

- Results: no events observed in 7 fb$^{-1}$ @ 8 TeV \rightarrow DY pair production mass limits
High mass Stable Charged Particles (HSCP) in CMS

JHEP07 (2013) 122

- Search for particles with significant lifetime (\(\geq a \) few ns), \(\beta < 1\), and possibly \(|q| \neq 1\)
- High \(p_T\) muon trigger plus missing \(E_T\) trigger
- Use \(dE/dx\) in tracker and TOF to muon system to distinguish HSCP signal
- Five channels: single charge in tracker+TOF, tracker only, muon only, fractional-charge (tracker only), and multiple charge
- Smirnov–Cramer–von Mises discriminator, \(l_{as}\) used to separate SM particle from candidates with large (small) \(dE/dx\)
- Background estimation: ABCD method

<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>(\sqrt{s} = 7) TeV</th>
<th>(\sqrt{s} = 8) TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_T) (GeV/c)</td>
<td>(l_{as})</td>
<td>1/(\beta)</td>
</tr>
<tr>
<td>Tracker-only</td>
<td>>70</td>
<td>>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracker+TOF</td>
<td>>70</td>
<td>>0.125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon-only</td>
<td>>230</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q > 1e)</td>
<td>–</td>
<td>>0.500</td>
</tr>
</tbody>
</table>
• Limits on cross sections are given for models with the production of gluinos, scalar tops, and staus, and for Drell–Yan like production of fractionally, singly, and multiply charged particles.
High mass Stable Charged Particles in CMS

- **Summary of exclusion limits**

<table>
<thead>
<tr>
<th>particle</th>
<th>mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>gluino (f = 0.5)</td>
<td>< 1276 GeV</td>
</tr>
<tr>
<td>gluino (f = 1.0)</td>
<td>< 1250 GeV</td>
</tr>
<tr>
<td>gluino (f = 0.1)</td>
<td>< 1322 GeV</td>
</tr>
<tr>
<td>gluino (f = 0.1)</td>
<td>< 1233 GeV</td>
</tr>
<tr>
<td>stop</td>
<td>< 935 GeV</td>
</tr>
<tr>
<td>stop</td>
<td>< 818 GeV</td>
</tr>
<tr>
<td>stau</td>
<td>< 500 GeV</td>
</tr>
<tr>
<td>stau</td>
<td>< 339 GeV</td>
</tr>
</tbody>
</table>

f is the fraction of gluinos hadronizing into $g^{-}\text{gluon}$ bound states

- Drell–Yan like signals with $|Q| = e/3, 2e/3, 1e, 2e, 3e, 4e, 5e, 6e, 7e,$ and $8e$ are excluded with masses below $200, 480, 574, 685, 752, 793, 796, 781, 757,$ and 715 GeV/c^2, respectively
In the context of the AMSB model, charginos with lifetimes $\tau > 100$ ns (3 ns) and masses up to about 800 GeV (100 GeV) are excluded at 95% CL.

High mass Stable Charged Particles in CMS

- **Reinterpretation of the search results**
 - Developed a technique to allow anyone to assess CMS sensitivity to any model predicting long-lived lepton-like particles
 - Main principle: measure the efficiency for these particles as a function of β and η in bins of p_T; then one just needs the predicted kinematics from the model
 - Example: reinterpret results in the context of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model
 - The most stringent limits to date are set on the long-lived sector of the pMSSM sub-space that covers SUSY particle masses up to about 3 TeV: 95.9% (100%) of the points with a chargino lifetime $\tau \geq 10$ ns (1000 ns) are excluded by the present analysis of the results from the CMS search

In the context of the AMSB model, charginos with lifetimes $\tau > 100$ ns (3 ns) and masses up to about 800 GeV (100 GeV) are excluded at 95% CL.
Conclusions

- With no sign of new physics, there has been much speculation that BSM signals could be hiding in stable, meta-stable heavy charged particles
- ATLAS and CMS Run1 searches for highly ionizing particles at the LHC were very successful
- Long list of new physics analyses and results presented in this talk
- New or stronger limits have been established by the two experiments
- While we complete the Run1 program, data at higher energy are being collected
- We are looking forward to the increased discovery potential of Run2
Extra
The ATLAS detector

- Muon chambers
- Toroid magnets
- Solenoid magnet
- Transition radiation tracker
- Semiconductor tracker
- Pixel detector
- LAr electromagnetic calorimeters
- LAr hadronic end-cap and forward calorimeters
- Tile calorimeters
The CMS detector

CMS Detector
- Weight: 14,000 tonnes
- Diameter: 15.0 m
- Length: 28.7 m
- Magnetic field: 3.8 T

- Silicon Trackers
- Superconducting Solenoid
- Muon Chambers
- Preshower
- Forward Calorimeter
- Electromagnetic Calorimeter
- Hadron Calorimeter
- Steel Return Yoke
Physics objects

- **Jet**: cluster in EM and hadronic calorimeters (and Inner Detector)
- **Photon**: EM cluster without matching track
- **Electron**: EM cluster with matching track
- **Muon**: matching tracks in inner and muon trackers, or muon standalone
- **Tau**: Narrow jet with matching track(s)
- **MET (missing E_T)**: p_T required to balance all of the above (and more)
Physics objects
ATLAS and CMS: more details

LTerafe	CMS
B-field	2T solenoid (Inner Tracker inside, HCAL outside of B-field) + toroid: 0.5T (barrel), 1T (endcap)
→ good for jet resolution, worse for e/γ	
Tracker	4T solenoid + return yoke (ECAL and part of HCAL inside)
→ good for e/γ resolution, worse for jet	
Si pixels and strips + transition radiation tracker	
→ high resolution, granularity, “continuous” tracking at large radii	Si pixels and strips (fully Silicon)
→ high resolution, granularity	
σ/pt ~ 5 x 10^-4 pt + 0.01	σ/pt ~ 1.5 x 10^-4 pt + 0.005
84% reco efficiency (material budget, B-field)	80% reco efficiency
90% reco efficiency	85% reco efficiency
EM calo	Liquid argon + Pb absorbers
→ high granularity	
PbWO₄ crystals	
→ high resolution	
σ/E ~ 10%/√E + 0.007	σ/E ~ 3%/√E + 0.003
1.0 - 1.5% E resolution	0.8% E resolution
1.3 - 2.3% E resolution	2.0% E resolution
Had calo	Fe + scintillator / Cu+Lar (10λ)
σ/E ~ 50%/√E + 0.03 GeV	
Brass + scintillator (7λ + catcher)	
σ/E ~ 100%/√E + 0.05 GeV	5%
2%	
20 GeV	
Muon	σ/pt~2% at 50 GeV to 10% at 1 TeV
(Inner Tracker + muon system)	
σ/pt~1% at 50 GeV to 10% at 1 TeV	
(Inner Tracker + muon system) |
Stable Massive Particles (SMPs) predicted by many BSM scenarios, including several different SUSY models

- **Sleptons** are massive, charged and metastable in GMSB

- **R-hadrons** are colored SMPs: bound states formed by squarks and gluinos hadronizing with a light SM quarks system, several electric charges (and the electric charge can change due to nuclear scattering in the detector)

- **Long-lived** for this search

<table>
<thead>
<tr>
<th>composition</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-mesons</td>
<td>(R = \tilde{g}q\bar{q}, (\bar{q}q))</td>
</tr>
<tr>
<td>R-baryons</td>
<td>(R = \tilde{g}qq, (\bar{q}qq))</td>
</tr>
<tr>
<td>R-gluinoballs</td>
<td>(R = \tilde{g}g)</td>
</tr>
</tbody>
</table>

As in Ref. [19], dE/dx for a track is estimated as:

$$I_h = \left(\frac{1}{N} \sum_i c_i^{-2} \right)^{-1/2}$$

where N is the number of measurements in the silicon-strip detectors and c_i is the energy loss per unit path length in the sensitive part of the silicon detector of the ith measurement; I_h has units MeV/cm. In addition, two modified versions of the Smirnov–Cramer–von Mises [54, 55] discriminator, I_{as} (I_{as}'), are used to separate SM particles from candidates with large (small) dE/dx. The discriminator is given by:

$$I_{as}^{(l)} = \frac{3}{N} \times \left(\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i^{(l)} \times \left(\frac{P_i^{(l)} - \frac{2i - 1}{2N}}{2} \right)^2 \right] \right),$$

where P_i (P_i') is the probability for a minimum ionizing particle (MIP) to produce a charge smaller (larger) or equal to that of the ith measurement for the observed path length in the detector, and the sum is over the measurements ordered in terms of increasing $P_i^{(l)}$.

As in Ref. [19], the mass of a $|Q| = 1e$ candidate particle is calculated based on the relationship:

$$I_h = K \frac{m^2}{p^2} + C,$$

where the empirical parameters $K = 2.559 \pm 0.001$ MeV \cdot c^2/cm and $C = 2.772 \pm 0.001$ MeV/cm are determined from data using a sample of low-momentum protons in a minimum-bias dataset. The number of silicon-strip measurements associated with a track, 15 on average, is sufficient to ensure good dE/dx and mass resolutions.