Measurement of Differential Cross Sections in Top Pair Production with the CMS Detector

European Physical Society Conference on High Energy Physics
Vienna, Austria, July 22–29, 2015

ULRICH HUSEMANN on behalf of the CMS Collaboration
Differential Cross Sections: Why?

- **Properties** of the top quark:
 - Detailed **test of perturbative QCD** (and MC generators) at the highest scales
 - Search for **BSM physics** involving top quarks

- Top quarks as a **tool**:
 - **Detailed understanding** of TeV-scale standard model processes → benefit for **Higgs physics** and **searches** for BSM physics
 - Extraction of **parton distribution functions**

- This presentation: **differential cross section results from the CMS experiment**
 - $t\bar{t}$ differential cross sections and jet multiplicity
 - Event-level observables in $t\bar{t}$ events
Differential Cross Sections: How?

- General strategy of differential cross section measurements
 1. Object reconstruction and tight event selection (lepton+jets, dilepton) → pure $t\bar{t}$ sample
 2. Top quark kinematic reconstruction
 3. Background subtraction
 4. Corrections: detector acceptance, resolution → regularized unfolding techniques
 5. Comparison with theory (visible or full phase space)

Normalized Differential Cross Section: Master Formula

$$\frac{1}{\sigma} \frac{d\sigma_i}{dX} = \frac{1}{\sigma} \frac{\text{unfold}(s^X_i - b^X_i)}{\Delta^X_i \cdot \int \mathcal{L} \, dt}$$

Object Reconstruction

Top Kinematic Reconstruction

Theory Comparison

[arXiv:1505.04480 [hep-ex], submitted to EPJC]
Visible Phase Phase & Observables

- **Acceptance** corrections:
 - Limitation for cross section measurements: **extrapolation** from limited detector acceptance to **full phase space** with theory/simulation tools
 - Measurement of differential cross sections in **visible phase space** (aka fiducial cross sections) → reduced dependence of measurement on signal/background **modeling**
 - Corrections to level of **stable particles**
 (some analyses: parton-level information on tops)

- **Observables** in differential cross section measurement:
 - **Directly** measured quantities, e.g. kinematics of leptons and b jets: **visible** phase space → comparison with Monte Carlo (MC) simulations
 - **Reconstructed** quantities (top and t\(\bar{t}\) system): **visible** and **full** phase space → comparison with **MC** and **calculations** (e.g. fixed-order NNLO)
Leptons and b-Jets

- Measurement in **visible** phase space

- **Leptons** (left):
 - Example: e/µ+jets
 - \(p_T \) spectrum slightly softer in data

- **b-Jets** and \(b\bar{b} \) system (right):
 - Example: dilepton
 - \(\eta_b \) slightly less central in data

- Good description of all distributions:
 - Powheg+Herwig6
All distributions corrected to parton level (before decay, but after radiation)

Top kinematics (left):
- Examples: top transverse momentum and rapidity
- Generally good agreement with MC and calculations up to approx. NNLO
- Measured p_T spectrum softer than most MC predictions, best description by Powheg+Herwig6

$t\bar{t}$ kinematics (right):
- $p_T^{t\bar{t}}$ well described (except NLO+NNLL calculation)
- $m_{t\bar{t}}$ tails in data lower than predictions
Consistency of Results

- **Results consistent among all CMS measurements**
 - e/μ+jets vs. dilepton
 - 7 TeV vs. 8 TeV

- **Comparison with ATLAS results:**
 - Generally *good* agreement
 - Some *differences* in low top p_T region (under investigation at LHCTOPWG)
Jet Multiplicity in $t\bar{t}$ Events

- $t\bar{t}$+jets:
 - Results from 7 TeV and 8 TeV data
 - e/μ+jets & dilepton

- Main results:
 - Jet multiplicity (unfolded to particle level)
 - Comparison with MC generators → good agreement with MadGraph and Powheg
 - Comparison with Q^2 scale variations (MadGraph)
Jet Multiplicity in $t\bar{t}$ Events

- $t\bar{t}$+jets:
 - Results from 7 TeV and 8 TeV data
 - e/μ+jets & dilepton

- Additional results:
 -Multiplicity of additional jets (not matched to top partons)
 -Gap fractions:

$$f(X_0) = \frac{N(X < X_0)}{N_{\text{total}}}$$

$(X = p_T$ of two additional jets, $H_T)$
Event-Level Observables in $t\bar{t}$

- Event-level observables (e.g. E_{T}^{miss}, H_{T}) sensitive to rare processes (e.g. $t\bar{t} + W/Z/H$) and new physics in lepton + multijet final states

- Analysis strategy:
 1. Standard lepton+jets event selection with ≥ 2 b-tagged jets \rightarrow pure $t\bar{t}$ sample
 2. Split samples into bins of event-level observables
 3. Obtain top content from fit to lepton $|\eta|$ distribution
 4. Correct for leptons from tauonic top decays and single top process
 5. Correct for migration effects (regularized unfolding)
Event-Level Observables in $t\bar{t}$

- Observables:
 - Missing transverse energy E_T^{miss} (previous slide)
 - Scalar sum of transverse momenta: all jets (H_T), all objects (S_T)
 - $W \rightarrow l\nu$ decay: transverse momentum (p_T^W), transverse mass (m_T^W)

- Results: **good agreement** with MC generators
Summary and Conclusions

- Towards precision top physics: differential cross sections

- This presentation: CMS results with LHC Run 1 data on
 - Differential cross sections as a function of lepton and b-quark kinematics
 - Kinematics of top quark and $t\bar{t}$ system
 - Modeling of QCD radiation: jet multiplicity in $t\bar{t}$ events
 - Event-level observables in $t\bar{t}$ events
 - Generally good agreement with standard MC generators, working on remaining discrepancies with ATLAS and theory/MC community
Outlook: First Tops at 13 TeV

Event Display: μ+Jets Event with Two b-Tags

[CMS DP-2015/019]
Outlook: First Tops at 13 TeV

Kinematic Distributions: H_T and Hadronic Top Mass

[CMS DP-2015/019]
Bibliography

- Please refer to the original publications for more details

- Differential cross sections:
 - arXiv:150504480, submitted to EPJC (8 TeV), additional material (8 TeV)
 - EPJ C73 (2013) 2339 (7 TeV)

- Jet multiplicity:
 - CMS-PAS-TOP-12-041 (8 TeV)
 - EPJ C74 (2014) 3014 (7 TeV)

- Event-level observables:
 - CMS-PAS-TOP-12-042 (8 TeV)
 - CMS-PAS-TOP-12-019 (7 TeV)

- This work was supported by the German Bundesministerium für Bildung und Forschung (BMBF) under contract 05H15VKCCA