# New Approaches in Determining the Top-Quark Mass

## Alternative Techniques and Differential Measurements

Jan Kieseler

DESY

for the CMS Collaboration

24.07.2015









## The Top-Quark Mass



- Extraordinary precision in 'direct' top-quark mass measurements
  - Reconstruct event kinematics
  - ▶ Calibrate to mass employed in MC (incl. PS)
  - Measure "MC mass" mt



- ▶ Parameter in the Lagrangian m<sub>0</sub>
- ▶ Beyond LO: Renormalization
- m<sub>t</sub> becomes scheme dependent
  - Pole mass: absorb full self-energy in mass  $\rightarrow$  ambiguity  $\Lambda_{\text{QCD}}$
  - Short-distance 'running masses' e.g. MSbar: absorbs UV div, only, scale dependent → not discussed here
- Studies suggest: difference between MC mass and pole mass O(1 GeV) arXiv:1405.4781, arXiv:0808.0222





#### Alternative Measurements: Outline



- Study properties of top-quark mass in detail and from many perspectives
  - kinematic dependence of m<sub>t</sub>
  - Use extraction methods complementary to standard measurements
  - Minimize dependence on simulation
  - Extract mass in well defined scheme by confronting measured and predicted observables





#### Dependence on Event Kinematics



#### PAS TOP-12-029, TOP-14-001

- 8 (7) TeV, l+jets channel, 19 (5) fb<sup>-1</sup>
- 'Direct' measurements calibrate using MC mass
- MC mass depends on event kinematics?
- Is expected dependence described by MC?



- Measure difference between average m<sub>t</sub> and m<sub>t</sub> for a part of the phase-space
  - ▶ Employ 2D ideogram method to derive global JSF, <mt>
  - ▶ Calibrate globally to MC m<sub>t</sub>
  - Apply same procedure to subset of events according to event observable (keeping global calibration fixed)
    - light-quark jets, b-jets, hadronic top, H<sub>T</sub>





#### Selected Distributions



MG, Pythia P11noCR

500

----- MC@NLO, Herwig 6

- JES calibration factor well described, even for jets close in  $\Delta R$
- Significant turn on wrt H<sub>T</sub>, but well described by all predictions
- Low dependence observed wrt top-quark p<sub>T</sub> or b-jet rapidity.
- → All distributions well  $described \rightarrow m_t calibration$ procedure validated
- → Data not (yet) able to clearly discriminate between predictions









## Top-quark Mass from B-Hadron Lifetime



#### **PAS TOP-12-030**

- 8 TeV, l+jets, eµ dilepton, 19 fb-1
  - eµ: at least two opposite charged isolated leptons
  - ▶ jet with max L<sub>xy</sub>: central rapidity
- Extract top-quark mass from Lxy

$$L_{xy} \approx 0.4 \frac{m_t}{m_B} \beta_B \tau_B, \, \mathcal{O}(7 \, \text{mm})$$

- Consider secondary vertex with max  $L_{xy}$ , at least  $3\sigma$  significance wrt primary vertex
- Complementary approach to 'direct' measurements:
  - reduced sensitivity to jet-energy modelling
  - more dependence on modelling of production process
- Crucial: description of background shapes and rates







## Top-quark Mass from B-Hadron Lifetime (2)



#### **PAS TOP-12-030**

- Backgrounds from data (l+jets)
  - W→l√
  - ▶ QCD
- Backgrounds from data (eµ)
  - ▶ Z→11





- Cross check of  $L_{xy}$  calibration using  $p_T$  balanced dijet events
- Combine channels (using BLUE)
- Dominant uncertainties
  - Background determination
  - Top-quark p<sub>T</sub> modeling

see talk by Ulrich Husemann (differential cross sections)

m<sub>t</sub>=173.5 ±1.5(stat) ±1.3(syst) ±2.6(top p<sub>T</sub>) GeV



## Extraction from Endpoints



Eur. Phys. J. C 73 (2013) 2494

- 7 TeV, dilepton, 5 fb<sup>-1</sup>
  - $\triangleright$  2 isolated, opposite charged leptons (e/ $\mu$ ), for ee, $\mu$  $\mu$  veto 76 <  $m_{11}$  < 115 GeV
  - ▶ 2 b-tagged high p<sub>T</sub> jets, high missing transverse energy
- Perform mass measurement with minimal input from simulation



- Construct kinematic observable with endpoint that relates to m<sub>t</sub>
  - ullet transverse mass of ttbar pair  $M_{T2} = \min_{p_T^{
    u_a} + p_T^{
    u_b} = p_T^{
    m miss}} \left[ \max(m_T^a, m_T^b) 
    ight]$
  - reduce sensitivity to ttbar p<sub>T</sub>/ISR  $M_{T2} 
    ightarrow M_{T2\perp} = \mu_{bb}$
  - Endpoint  $\mu_{bb}^{\max} = m_t$
- Similar to µbb: µll
- Invariant mass of b-jet and lepton M<sub>bl</sub>



## Extraction from Endpoints (2)



#### Eur. Phys. J. C 73 (2013) 2494

- Perform event-by-event combined unbinned likelihood for all observables
- For each observable analytic function for
  - background
  - resolution
  - ▶ endpoint





- Estimate all uncertainties in data
- Dominant uncertainty: jet energy scale

$$m_t = 173.9 \pm 0.9 \text{ (stat)} + 1.7 - 2.1 \text{ (syst) GeV}$$

• In principle also applicable to BSM searches with undetected particles



#### Extraction from Inclusive Cross Section



#### Phys. Lett. B 738 (2014) 526-528

- 7 TeV, dilepton, 2.3 fb<sup>-1</sup>
  - based on measurement JHEP 11 (2012) 067
- Predicted cross section shows steeper slope than measurement
- Prediction employs <u>well defined</u> topquark mass in pole scheme





- Measured dependence expressed in terms of MC mass
  - Consider additional uncertainty by varying measured curve by ±1 GeV
- Dominant uncertainties
  - Measured cross section
  - ▶ PDF

 $m_{t,pole} = 176.7 + 3.0 - 2.8 \text{ GeV (NNPDF 2.3)}$ 



## Extraction from Differential do/dm<sub>lb</sub>



#### **TOP-14-014**

- 8 TeV, eµ dilepton, 19 fb<sup>-1</sup>
  - ≥2 opposite charged isolated leptons
  - ≥2 high p<sub>T</sub> jets, ≥1 b-tagged
- Extract  $m_t$  from differential crosssection  $(m_{lb})$  arXiv:1006.0910
- Define  $m_{lb}$ : choose permutation with minimum  $m_{lb}$ 
  - On detector level
    - leading b-jet + opposite charged leptons
  - On prediction level
    - leading b quark + leptons
    - visible phase space
- Precise knowledge of lepton kinematics, leading b-jet: less JES uncertainties







## Extraction from Differential $d\sigma/dm_{lb}(2)$



#### **TOP-14-014**

- Use MCFM to generate m<sub>lb</sub> (LO decay)
- Use response matrix to fold to detector level (matrices will be published)

$$\vec{x}_{reco} = \mathcal{L} \cdot M^{resp} \ \vec{x}_{pred}$$

- Extract m<sub>t</sub> by product of bin-wise likelihoods
  - ightharpoonup similar to extraction from incl.  $\sigma_{tt}$





- Dominant: JES, Q<sup>2</sup> scale
- No sensitivity to production mechanism
- Method for precise m<sub>t,pole</sub> determination

Jan Kieseler 12



#### Summary



• Large variety of alternative m<sub>t</sub> measurements



- dm<sub>t</sub>/dX well described by MC
  - gained trust in MC calibration procedure
- Consistent and complementary results from direct, B-hadron lifetime methods
- Simulation-independent measurement from kinematic endpoints
  - ▶ In principle extendable to BSM searches
- Well-defined pole-mass extraction from inclusive cross section
- Robust procedure to extend to differential cross sections → higher precision
- Plan to extend variety:
  - Possibly study dσ/dm<sub>lb</sub> defined based on generated b-jets instead of partons
     → independence of pQCD accuracy
  - Exploit larger statistics at 13 TeV: mt from J/Psi decays and further refined studies