

EPS HEP 2015, Vienna

Hardware-based tracking at trigger level for ATLAS: The Fast TracKer (FTK) Project

Johanna Gramling for the ATLAS Collaboration

24.07.2015

ATLAS-TDR-021

johanna.gramling@cern.ch

Why?

- Run II of LHC started 13 TeV collisions!
 - With more than twice the luminosity compared to Run1, average of 40-50 collisions per bunch crossing expected
- Tracking at trigger level is essential to control rates while maintaining good efficiency for relevant physics processes – especially with high pile-up!
 - Measuring number and position of vertices improve robustness especially of jet and missing $E_{\scriptscriptstyle T}$ triggers with changing pile-up conditions

8 TeV Z $\rightarrow \mu\mu$ event with 25 reconstructed collision vertices (seen by the Inner Detector)

Why?

- Higgs found!
 - Fermionic-coupling measurements important to pin down (SM-like?) Higgs properties
 - Channels involving b and τ final states crucial, but:
 - Large QCD backgrounds
 - Low trigger efficiencies
- SUSY could be hiding with light sbottom, stops, staus
 - Would lead to final states with moderate-momentum b's and τ 's
 - → difficult to trigger and select

B-jets: Displaced vertex

"typical" jet τ jet:
fewer tracks in smaller cone

 \rightarrow Tracking and hence resolving topology of b- and τ jets at trigger level crucial for such analyses!

- Tracking at trigger level
 - For every event passing the Level-1 trigger, FTK receives data from the 98 million channels of the silicon detectors and provides tracking information to high level trigger (HLT)

- Tracking has to be very fast maximum rate of 100 kHz
 - Process in parallel: decompose detector data into independent regions (64 Towers)
 - Data reduction: each cluster of adjacent pixels/strips defines one "hit"
 - When appropriate, re-bin hit information to coarser resolution
 - → SuperStrips

Several pixels are grouped together into one SuperStrip (SS)

- Tracking has to be very fast maximum rate of 100 kHz
 - Process in parallel: Reorganize the received hits
 - Data reduction: each cluster of adjacent pixels/strips defines one "hit"
 - Perform tracking in 2 steps
 - 1. Find track candidates: Roads
 - Compare fired SuperStrips to predefined track trajectories:
 Pattern matching
 - Minimum number of matched layers programmable

Pattern Matching in detail

- Pattern matching is performed in customly-designed chip using Associative Memory (AM)
 - Like playing Bingo
 - Incoming data is simultaneously compared to all stored patterns
 - → very fast matching!

More details on pattern matching: see talk by *Francesco CRESCIOLI*

- Tracking has to be very fast maximum rate of 100 kHz
 - Process in parallel: Reorganize the received hits
 - Data reduction: each cluster of adjacent pixels/strips defines one "hit"
 - Perform tracking in 2 steps
 - 1. Find track candidates: *Roads*
 - 2. Perform full-resolution *track fitting* INSIDE roads
 - Combinatorics reduced → faster!

Tracking detectors

Custom pixel clustering algorithm on FPGAs

Data Flow – in hardware components

FTK = (very complex) custom parallel supercomputer

- FTK is a big system
 - 8 full 9U VME crates
 - 5 ATCA shelves
- Many different boards
 - 2 types of ATCA boards
 - Data Formatter (DF), FTK-to-Level-2 Interface Crate (FLIC)
 - mezzanine for clustering (input mezzanine)
 - 9U Auxiliary board (AUX)
 - data organizer, track fitting and fake reduction functions
 - 2 types of 9U VME boards
 - Associative Memory Board (AMB),
 Second Stage Board (SSB)
 - 9U/4 mezzanine for Associative Memory chip (AMchip06)

~2000 FPGAs and ~8000 custom AM chips

Expected Performance

- FTK online track quality comparable to offline
 - Slightly worse resolution
 - Small effect from pile-up
- b-tagging efficiency similar to offline, with high light-jet rejection when using FTK
- Linear correspondence between number of FTK and offline vertices
 - Independent of pile-up
- Trigger efficiency for 1-prong τ 's in H $\to \tau \tau$ significantly improved when optimizing algorithms including FTK tracks

How to profit from FTK?

Jet Trigger

- Profit from precise pile-up information
 - energy corrections based on number of vertices found by FTK
 - Better jet quality cuts to reduce pile-up effects: especially important for multijets or b-jets (room for improvement for b-tagging!)
- Use FTK tracks to recover efficiency for low-p₊ or close-by jets

Muon/Electron Trigger

- Pile-up dependence of calorimeter-isolation and electron shower shapes
- Track-based isolation for muons
- Recover di-muon events via high-p₊ FTK tracks

Missing E_T Trigger

Improve MET resolution by track/pile-up info from FTK

Tau Trigger

- Refine algorithms by including FTK tracks
- Improved calorimeter shower shapes due o precise pile-up inforation
- Recover L1 inefficiencies via high-p₊ FTK tracks

SUMMARY

- FTK aims at providing tracking information at trigger level
 - Especially beneficial for signatures relying on medium-p_ b's or τ 's
 - Constraints on pile-up improve many trigger selections
- System optimized to achieve rates of 100 kHz
 - Parallel processing of event data
 - 2-stage tracking: pattern matching to identify track candidates
- Pattern matching done with custom AM chips
 - → Learn more in next talk by Francesco Crescioli
- FTK track quality and efficiency close to offline performance
- Integration of first boards ongoing
 - Barrel-only FTK processing expected in spring 2016, then HLT integration and extension to full coverage will follow
- HL-LHC: possibly extend and refine FTK concept to cope with highluminosity conditions
 - Tracking at Level-1 using an AM-based system with upgraded AM chip

BACKUP

Expected Performance

Vertexing, b-tagging

- Similar b-tagging efficiency with high online FTK light-jet rejection
- Linear correspondence between number of FTK and offline vertices
 - Independent of pile-up

