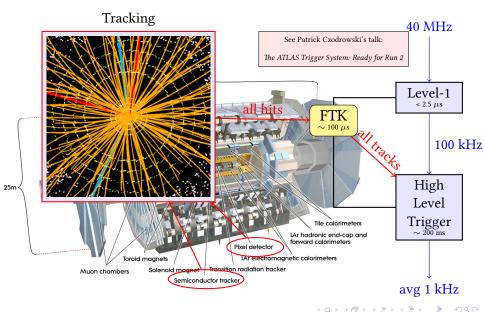
A. Annovi M. Beretta R. Beccherle N. Biezus S.Citraro **F. Crescioli**¹ P. Giannetti M. A. Mirzaei V. Liberali Y. Piadyk E. Rossi A. Stabile

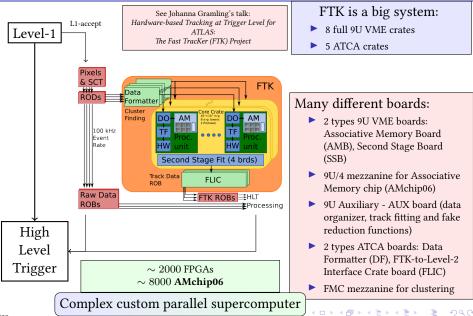
> ¹(LPNHE - IN2P3 - CNRS) seconded to CAEN SpA

EPS-HEP 2015 - 22-29/07/2015 - Vienna

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

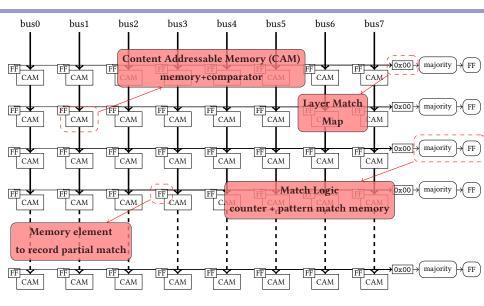

Outline

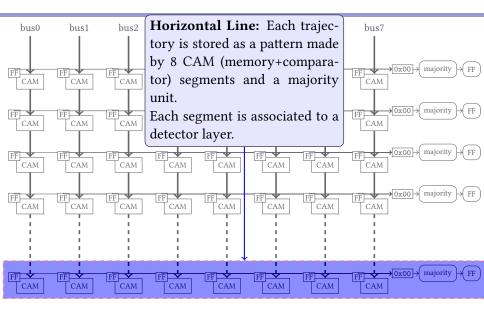
- Introduction to the FTK tracking algorithm
- Associative Memory function and architecture
- AMchip05
 - Features
 - Performances
 - Role in FTK
- Pattern bank optimization and variable resolution

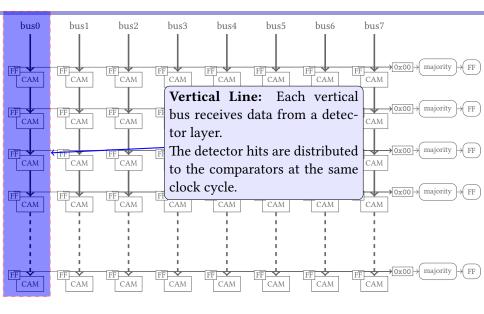

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

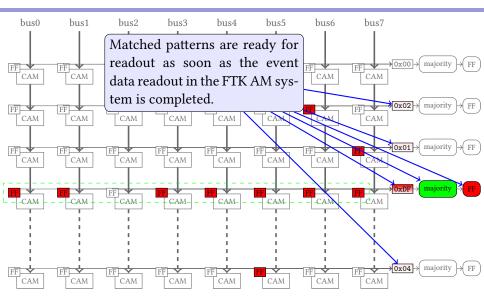
- Toward HL-LHC
- Conclusions

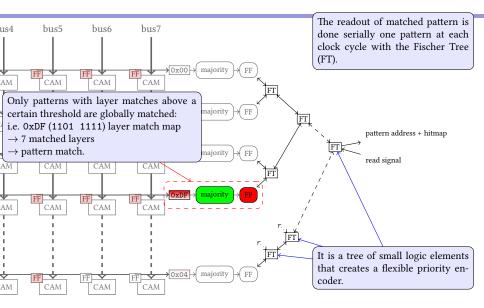
FTK AMchip05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments — The ATLAS experiment and its TDAQ


FTK AMchip05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments The ATLAS experiment and its TDAQ




$\chi^2 = \sum_{ij} f_i \cdot F_{ij}^{-1} \cdot f_j = \sum_i \tilde{f}_i^2$ FTK is based on a two step algorithm $F_{ii} \simeq \sum_{kl} \frac{\partial f_i}{\partial r_l}$ Associative memory Constraint Tangent Plane Preloaded with the pattern bank Find patterns in a complex event in real time Act as a filter to reduce the complexity of fitting stage Modular algorithm: scalable and parallelizzable. Extremely fast associative memory hardware. $\tilde{f}_i(\vec{x}) \simeq \vec{v}_i \cdot \vec{x} + c_i$ $p_j(\vec{x}) \simeq \vec{w}_j \cdot \vec{x} + q_j$ PATTERN 5 PATTERN 4 Linearized track fit PATTERN PATTERN 3 PATTERN N . HIT # 144 Performed only on patterns found by the AM Combinatorial problem reduced: essential in crowded events with high pile-up Fast in FPGA


Associative Memory internal structure


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

FTK AMchip
05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments
 $\hfill AMchip05$

AMchip05

Main features:

- ► Two Associative Memory architecture designs:
 - 2k patterns XORAM arch
 - 1k patterns TOP2_LV arch
- 65 nm TSMC technology
- Full custom CAM-cell
- Standard Cells control logic
- ► 100 MHz target operating frequency
- 2 Gbps inputs for hits (x8 bus)
- ► 2.4 Gbps inputs/output for patterns
- Variable resolution
 - 2 to 9 bits configurable as ternary

AMchip05 is the last prototype. **AMchip06** - the chip that will be installed in FTK - is functionally identical, but with **128k patterns**.

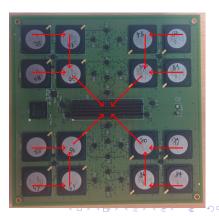
3

イロト 不得 とうほう イヨン

FTK AMchip
05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments
 $\hfill AMchip05$

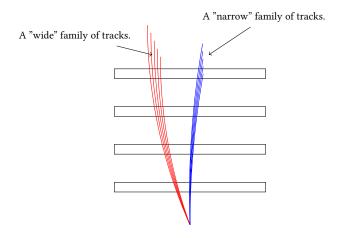
AMchip05 Tests

- High-speed serial data transfer verified on testbench
 - Direct testing: BER < 10⁻¹² errors/s @ 2 Gbps
 - Stable link up to 3.2 Gbps
- XORAM Pattern bank tested
 - O(10¹⁰) randomized pattern bank data/hits tests
 - ► ~98% of chips with zero errors out of ~180 tested

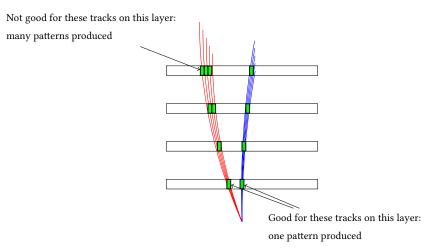


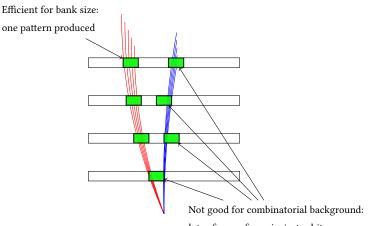
▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

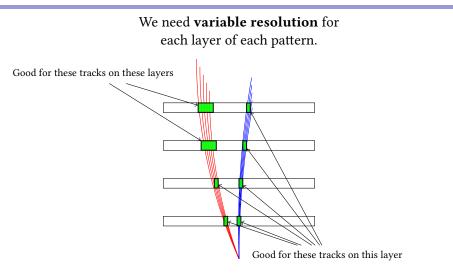
AMchip05 Integrated on the LAMB


- ▶ 16 AMchip05 per LAMB
- Hit data is distributed in parallel to all chips
- Pattern readout is arranged in 4 trees
 - Each AMchip05 can receive patterns from 2 neighbouring chips
 - It merges its own internal patterns with the received patterns to the output
 - Chips can be arranged in a binary-tree structure to increase pattern size without adding pattern inputs in the FPGA

Each FTK processor unit covering $\frac{1}{128}$ of the detector has one Associative Memory Board (AMB), each AMB has 4 LAMB mezzanines \rightarrow 8 Mpatt with AM-chip06


Variable Resolution feature


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ


Regions of track parameter space might have different variance on different layers.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Variable resolution is possible by encoding *don't care* bits in the pattern.

A simple 2D layer with 32 pixels 4 \times 8.

Each pixel is identified by a number.

00000	00001	00010	00011	00100	00101	00110	00111
01000	01001	01010	01011	01100	01101	01110	01111
10000	10001	10010	10011	10100	10101	10110	10111
11000	11001	11010	11011	11100	11101	11110	11111

A 5-bit encoded value will match a certain pixel. 00101

00000	00001	00010	00011	00100	00101	00110	00111
01000	01001	01010	01011	01100	01101	01110	01111
10000	10001	10010	10011	10100	10101	10110	10111
11000	11001	11010	11011	11100	11101	11110	11111

> Using *don't care* on a bit will match two pixels \rightarrow a **lower resolution pixel** 0110X

00000	00001	00010	00011	00100	00101	00110	00111
01000	01001	01010	01011	01100	01101	01110	01111
10000	10001	10010	10011	10100	10101	10110	10111
11000	11001	11010	11011	11100	11101	11110	11111

don't care can be placed to select

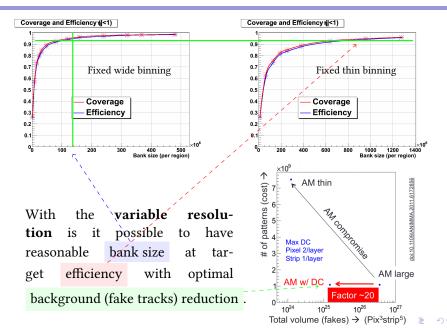
different shapes.

00000	00001	00010	00011	00100	00101	00110	00111
01000	01001	01010	01011	01100	01101	01110	01111
10000	10001	10010	10011	10100	10101	10110	10111
11000	11001	11010	11011	11100	11101	11110	11111

More than one *don't care bit*

can be used.

XX110


00000	00001	00010	00011	00100	00101	00110	00111
01000	01001	01010	01011	01100	01101	01110	01111
10000	10001	10010	10011	10100	10101	10110	10111
11000	11001	11010	11011	11100	11101	11110	11111

Various shapes and resolutions

are possible.

00000	00001	00010	00011	00100	00101	00110	00111
01000	01001	01010	01011	01100	01101	01110	01111
10000	10001	10010	10011	10100	10101	10110	10111
11000	11001	11010	11011	11100	11101	11110	11111

FTK AMchip05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments
AMchip in future applications

FTK AMchip
05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments
 $\hfill Conclusions$

- AMchip05 is the latest prototype for FTK before AMchip06 production
- It is identical to the production version except the pattern bank size (3k vs 128k)
- It has been extensively tested in laboratory and on the FTK LAMB prototypes
 - The chip works as expected and within specifications
- ► The AMchip05/06 architecture has configurable ternary bits
 - It enables the variable resolution of patterns
 - It is possible an optimization of the bank size with a significant gain in FTK efficiency
 - This gain has a direct impact in FTK trigger application to select physics objects
- AMchip05/06 is the last chip for FTK @ LHC
 - The development of the next generation for HL-LHC and other applications has started

- ► It will benefit from the experience of AMchip05
- ▶ We will move to 28 nm technology

FTK AMchip05: an Associative Memory Chip Prototype for Track Reconstruction at Hadron Collider Experiments
AMchip development has been supported by

