EPS-HEP 2015, Vienna 23 July 2015

Violation of lepton flavour universality in composite Higgs models

Presented by Peter Stangl

Junior Research Group "New Physics" Excellence Cluster Universe, Munich

Deviation from SM in ${\it B}^+ ightarrow {\it K}^+ \ell^+ \ell^-$

R_K from LHCb measurement

The measured ratio R_{K} has a 2.6 σ deviation from the SM:

$$R_{K} = rac{{\sf BR}(B^+ o K^+ \mu^+ \mu^-)}{{\sf BR}(B^+ o K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036\,.$$

LHCb, arXiv:1406.6482

If confirmed this would be an evidence for violation of lepton flavour universality (LFU).

Deviation from SM in $B^+ \to K^+ \ell^+ \ell^-$

R_K from LHCb measurement

The measured ratio R_{κ} has a 2.6 σ deviation from the SM:

$$R_{K} = rac{{\sf BR}(B^+ o K^+ \mu^+ \mu^-)}{{\sf BR}(B^+ o K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036\,.$$

LHCb, arXiv:1406.6482

If confirmed this would be an evidence for violation of lepton flavour universality (LFU).

Explanation by new physics models

- ▶ possible in models with spin-0 or spin-1 leptoquarks or a heavy neutral gauge boson mediating $b \rightarrow s \ell^+ \ell^-$ arXiv:1403.1269, 1408.1627, 1409.0882, 1409.4557, 1411.0565, 1411.3161, 1411.4773, 1412.7164, 1501.00993, 1501.05193, 1503.03477, 1505.03079,... see talk by Javier Fuentes-Martin
- not possible in the MSSM

Altmannshofer, Straub, arXiv:1411.3161

possible in composite Higgs models (CHMs) with composite leptoquarks

Gripaios, Nardecchia, Renner, arXiv:1412.1791

more simple CHMs: presented here, based on C. Niehoff, PS, D. Straub [arXiv:1503.03865]

Parametrization of $b ightarrow s \ell^+ \ell^-$ transition

Operators in the weak effective Hamiltonian

Transition $b \to s \ell^+ \ell^-$ parametrized by Wilson coefficients C_9^ℓ , C_9^{ℓ} , C_{10}^ℓ and $C_{10}^{\prime \ell}$ associated with the operators

$$\begin{aligned} \mathcal{O}_{9}^{\ell} &= \left(\bar{s} \, \gamma_{\mu} \, \mathcal{P}_{L} \, b \right) \left(\bar{\ell} \, \gamma^{\mu} \, \ell \right) & \mathcal{O}_{9}^{\prime \, \ell} &= \left(\bar{s} \, \gamma_{\mu} \, \mathcal{P}_{R} \, b \right) \left(\bar{\ell} \, \gamma^{\mu} \, \ell \right) \\ \mathcal{O}_{10}^{\ell} &= \left(\bar{s} \, \gamma_{\mu} \, \mathcal{P}_{L} \, b \right) \left(\bar{\ell} \, \gamma^{\mu} \, \gamma_{5} \, \ell \right) & \mathcal{O}_{10}^{\prime \, \ell} &= \left(\bar{s} \, \gamma_{\mu} \, \mathcal{P}_{R} \, b \right) \left(\bar{\ell} \, \gamma^{\mu} \, \gamma_{5} \, \ell \right) \end{aligned}$$

Parametrization of $b \rightarrow s \ell^+ \ell^-$ transition

Operators in the weak effective Hamiltonian

Transition $b \to s \ell^+ \ell^-$ parametrized by Wilson coefficients C_9^ℓ , C_9^ℓ , C_{10}^ℓ and $C_{10}^{\prime \ell}$ associated with the operators

$$O_{9}^{\ell} = (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\ell} \gamma^{\mu} \ell) \qquad O_{9}^{\ell} = (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\ell} \gamma^{\mu} \ell) O_{10}^{\ell} = (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \qquad O_{10}^{\ell} = (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell)$$

Constraints from recent fits

Recent fits have shown that the data prefers either

- a negative shift in C_9^{μ} only: $\delta C_9^{\mu} < 0$
- or a shift in C_9^{μ} and C_{10}^{μ} with $-\delta C_9^{\mu} = \delta C_{10}^{\mu} > 0$

Altmannshofer, Straub, arXiv:1411.3161

Heavy resonances in CHMs

- CHMs predict heavy resonance partners of SM fields that transform under a global symmetry $G \supset G_{SM}$.
- SM fields mix with heavy partners

e.g.
$$Z \rho$$

- Amount of mixing is called "degree of compositeness" (composite mass eigenstates from mixing)
- Mixing may modify SM couplings

Z exchange

Tree-level flavour-changing Z coupling from mixing of b,s and Z with heavy resonances

Heavy vector resonance ρ exchange

 $\rho\text{-muon}$ coupling which is approximately equal to Z-muon coupling

 $\rho\text{-muon}$ coupling from mixing of muons with heavy resonances

Z exchange

Tree-level flavour-changing Z coupling from mixing of b,s and Z with heavy resonances, gives a contribution $\delta C_{10}^{\mu} \gg \delta C_{9}^{\mu}$ due to the small vector coupling of Z to leptons and is lepton flavour universal.

Heavy vector resonance ρ exchange

 $\rho\text{-muon}$ coupling which is approximately equal to Z-muon coupling

 $\rho\text{-muon}$ coupling from mixing of muons with heavy resonances

Z exchange

Tree-level flavour-changing Z coupling from mixing of b,s and Z with heavy resonances, gives a contribution $\delta C_{10}^{\mu} \gg \delta C_{9}^{\mu}$ due to the small vector coupling of Z to leptons and is lepton flavour universal.

Heavy vector resonance ρ exchange

 ρ -muon coupling which is approximately equal to Z-muon coupling, has the same problem as the Z exchange.

 $\rho\text{-muon}$ coupling from mixing of muons with heavy resonances

Z exchange

Tree-level flavour-changing Z coupling from mixing of b,s and Z with heavy resonances, gives a contribution $\delta C_{10}^{\mu} \gg \delta C_{9}^{\mu}$ due to the small vector coupling of Z to leptons and is lepton flavour universal.

Heavy vector resonance ρ exchange

 ρ -muon coupling which is approximately equal to Z-muon coupling, has the same problem as the Z exchange.

 ρ -muon coupling from mixing of muons with heavy resonances,

might give the expected contribution if degree of compositeness s_{μ} is big enough.

Handedness of composite muons

- ▶ shift in only C_9^{μ} requires sizable left- and right-handed degrees of compositeness s_{μ_L} and s_{μ_R} .
- $\delta C_{10}^{\mu} = -\delta C_{9}^{\mu}$ would require only sizable $s_{\mu_{L}}$.

Handedness of composite muons

- shift in only C_9^{μ} requires sizable left- and right-handed degrees of compositeness s_{μ_L} and s_{μ_R} . But $s_{\mu_L} \cdot s_{\mu_R}$ enters μ mass and has to be small!
- $\delta C_{10}^{\mu} = -\delta C_{9}^{\mu}$ would require only sizable $s_{\mu_{I}}$.

Handedness of composite muons

- ▶ shift in only C_9^{μ} requires sizable left- and right-handed degrees of compositeness s_{μ_L} and s_{μ_R} . But $s_{\mu_L} \cdot s_{\mu_R}$ enters μ mass and has to be small!
- $\delta C_{10}^{\mu} = -\delta C_{9}^{\mu}$ would require only sizable $s_{\mu_{L}}$. This seems possible!

Handedness of composite muons

- ▶ shift in only C_9^{μ} requires sizable left- and right-handed degrees of compositeness s_{μ_L} and s_{μ_R} . But $s_{\mu_L} \cdot s_{\mu_R}$ enters μ mass and has to be small!
- $\delta C_{10}^{\mu} = -\delta C_{9}^{\mu}$ would require only sizable s_{μ_L} . This seems possible!

Lower bound on degree of compositeness

- Constraints from $B_s \cdot \overline{B}_s$ mixing require not too large $b \cdot s \cdot \rho$ coupling.
- To get an effect in R_K , one thus needs a degree of compositeness of

$$s_{\mu_L} \gtrsim 0.17 \cdot \sqrt{f/v}$$

Electroweak constraints

Constraints on $Z\mu_L\mu_L$ coupling

- ► s_µ would shift Z coupling to left-handed muons which is strongly constrained by LEP.
- This can be avoided by a custodial protection of the Z-muon coupling using a discrete P_{LR} symmetry! Agashe et al., arXiv:hep-ph/0605341, Agashe, arXiv:0902.2400
- This fixes the lepton partner representations!

Electroweak constraints

Constraints on $Z\mu_L\mu_L$ coupling

- s_{μ_I} would shift Z coupling to left-handed muons which is strongly constrained by LEP.
- This can be avoided by a custodial protection of the Z-muon coupling using a discrete P_{LR} symmetry! Agashe et al., arXiv:hep-ph/0605341, Agashe, arXiv:0902.2400
- This fixes the lepton partner representations!

Contribution to Fermi constant

- Charged current coupling $W^+ \mu_L^- \nu_{\mu_L}$ not protected.
- Shift of Fermi constant: $\frac{\delta G_F}{G_F} \approx -\frac{v^2}{4f^2} s_{\mu_I}^2$
- ► Constraints on G_F are correlated with constraints on T parameter: $s_{\mu_L} \lesssim 0.08 \frac{t}{v}$

Electroweak constraints

Constraints on $Z\mu_L\mu_L$ coupling

- ► s_µ would shift Z coupling to left-handed muons which is strongly constrained by LEP.
- This can be avoided by a custodial protection of the Z-muon coupling using a discrete P_{LR} symmetry!
 Agashe et al., arXiv:hep-ph/0605341, Agashe, arXiv:0902.2400
- This fixes the lepton partner representations!

Contribution to Fermi constant

- Charged current coupling $W^+ \mu_L^- \nu_{\mu_L}$ not protected.
- Shift of Fermi constant: $\frac{\delta G_F}{G_F} \approx -\frac{v^2}{4f^2} s_{\mu_I}^2$
- ► Constraints on G_F are correlated with constraints on T parameter: $s_{\mu_L} \lesssim 0.08 \frac{f}{v}$

The $Z u_{\mu L} u_{\mu L}$ coupling

- Neutral current coupling to neutrinos also not protected.
- The correction can explain the LEP 2σ deficit in the invisible Z width. This improves the agreement with the data!

Results

Result for R_K

Assuming a 10% correction to ΔM_s in B_s - \bar{B}_s mixing, one can express R_K by s_{μ_l} and f only:

$$1 - R_{\kappa} \approx 0.14 \left[\frac{1.3 \text{TeV}}{f}\right] \left[\frac{s_{\mu_L}}{0.4}\right]^2$$

Lower bounds for *f* & s_{μ_L} Using all previous assumptions:

$$f \gtrsim 1.3 TeV \quad s_{\mu_I} \gtrsim 0.4$$

Conclusions

Left handed muons with a sizable degree of compositeness can explain the departure from LFU measured by LHCb.

Predictions

- Explanation needs $\delta C_{10}^{\mu} = -\delta C_9^{\mu}$. Can be tested with more precise measurements.
- Violation of LFU in other modes expected.
- ► Sizable effect in *B_s* mixing testable with higher precision of CKM parameters.