

Inspiring Students Through Masterclasses

Katharine Leney

25th July 2015

Why Masterclasses?

- Hands-on activity using the same tools and data as real scientists.
- Gives students an insight into what research actually involves.
- Teaches students something *beyond* what they would learn in the classroom
- Helps cement their understanding of more basic concepts.

- Learn about collaboration and teamwork.
- Students get to meet other students from local schools.
- Fosters links between schools and universities

Typical Masterclass Programme

- Lectures to introduce particle physics, experiments and detectors (two lectures, 45 min each has been shown to work well).
- Could also include a guided tour of your labs, if appropriate.
- Lunch with lecturers, staff,
 PhD students.

- Students work in pairs to make measurements on data → need pool of PCs and ~1 tutor per ten students.
- Discussion and combination of results, either within the institute, or together with other institutes from around the world, via video conference.

International Masterclasses Programme

- Organised by IPPOG (International Particle Physics Outreach Group)
- Runs every year in March.

hands on particle physics

Example Measurement: LHCb D⁰ Lifetime

Measurement uses real $D^0 \rightarrow K\pi$ events collected by LHCb during 2012 data-taking ($\sqrt{s} = 8$ TeV)

Students are introduced to the concepts of:

- Particle lifetimes:
 - ▶ Ranges, e.g. Z boson has lifetime of 10⁻²⁵ seconds, proton has lifetime > 10²⁹ years)
 - ▶ How to measure these experimentally (lifetime ⇔ decay length)
- Particle oscillations (e.g. D⁰ oscillations between charm/anti-up and anti-charm/up states)
- Anti-matter; why it's important and what we can learn from it

LHCb D⁰ Lifetime: Identifying Events

- Students use event displays to identify D⁰ decays.
- Tools are provided so that they can zoom in around the interaction region to look for displaced vertices
- Tracks are colour-coded to aid with identification.

LHCb D⁰ Lifetime: `Easy' Event

LHCb D⁰ Lifetime: `Hard' Event

LHCb D⁰ Lifetime: Fitting

Trend vs. max IP

- Students create their own plot of the D⁰ mass distribution.
- Then given more data to do fits to mass, and lifetime distributions.

 Can apply cuts on D⁰ p_T, mass etc to select data-sample

LHCb D⁰ Lifetime: Results

- Students compare their lifetime measurement with those measured by LHCb, and the world average.
- Discussions
 about systematic
 uncertainties,
 and changing
 signal selection
 criteria.

Other Masterclass Measurements

CMS: W and Z boson measurements

- Distinguish W from Z boson candidates from event displays
- Look at ratio of number of W⁺ and W⁻ events
- Make invariant mass plot and identify J/Ψ, Υ, and Z-boson
- Find Higgs candidates from 4lepton and di-photon events

ALICE: Strange particle

- Identify strange particles $(K_s, \Lambda, anti-\Lambda)$ from their decay patterns and calculation of invariant mass.
- Count numbers of strange particles in different centrality regions (Pb-Pb data)
- Calculate strangeness enhancement factors by comparing to p-p data

ATLAS: Z boson measurements

- Search for pairs of leptons (e/μ) or photons, and events with 4 leptons.
- Use di-lepton invariant mass spectrum and identify J/Ψ, Υ, Z-boson, and simulated Z' events.
- Search for Higgs bosons in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$ events.

ATLAS: W boson measurements

- Look at ratio of number of W⁺ and W⁻ events to explore the structure of the proton.
- Search for Higgs events in
 H→WW→ℓνℓν decay channel by
 measuring the opening angle (φ)
 between the charged leptons.

Video Conference with CERN/Fermilab

Aims of the video conference:

- Convey the internationality of the event.
- Demonstrate how particle physicists work together internationally.
- Encourage students to share their experiences with each other
- Demonstrate how combining datasets improves accuracy.
- Be a fun end to a long day!

4-6 institutes participating in each session

25th July 2015

Video Conference with CERN/Fermilab

- presents their results to everyone else.
- Chance to talk about any difficulties or problems they had.

- Questions, about anything, e.g.
 - ▶ Big bang, dark matter, black holes etc.
 - ▶ How to get into physics.
 - ▶ Are we really sitting in the LHC tunnel!

Masterclasses, Chez Vous

What you will need:

- A group of students (aged 15 19)
- At least 1 scientist, holding the lecture
- Tutors for students during the measurement (1 tutor per 10 students)
- Lecture hall
- PC-pool (students work in groups of 2)
- Facility for video conferencing, if possible

Calendar for preparation (for International Masterclasses)

Now: Contact your <u>national representative</u> or <u>Uta Bilow</u> to register your interest.

October: You will be contacted to register your preferred dates and measurement.

November: Preliminary schedule is created by organisers - make local reservations for

facilities (e.g. lecture hall, PC pool).

<u>December</u>: prepare your local agenda and a link for registration.

<u>January</u>: send invitation letters to schools and students.

February: Plan preparation talks, introduce tutors to measurement.

March: Masterclass event.

For more details: http://physicsmasterclasses.org

Summary

- Masterclasses are an excellent way to engage students in your research field and inspire them to study Physics at a higher level.
- Several schemes already exist for High Energy Physics (including the International Masterclasses organised by IPPOG) that will help you get started with your own event.
- Very rewarding experience, both for students and local organisers.

