

WA105 Experiment

a large demonstrator of LAr double-phase TPC

Vyacheslav Galymov on behalf of WA105 collaboration

Institut de Physique nucléaire de Lyon

EPS 2015 July 24, Vienna

Large-scale liquid argon TPC

GLACIER (**G**iant **L**iquid **A**rgon **C**harge **I**maging **E**xpe**R**iment) concept A. Rubbia hep-ph/0402110

Concept of double-phase LAr TPC (Not to scale)

Large scale LAr TPC for LBL neutrino oscillation physics, astrophysics, and nucleon decay search (GUT physics)

- Cryostat based on industrial LNG solution to house O(10) kton of LAr mass
 - Fully active TPC volume with no dead material
- Double-phase for charge readout to achieve electron amplification:
 - Long drift distances
 - Low energy detection thresholds
 - Improved S/N ratio

LAGUNA-LBNO DLAr detector

Fully engineered design for ~24kton and ~50kton detectors from LAGUNA/LBNO design study (2011-2014)

- Tank constructed using LNG technologies
- Affordable solution for underground installation
- 1MV voltage on the cathode → 0.5 kV/cm drift field
- Hanging field cage structure → no contact with the tank floor
- Charge collection in two views
- Tunable gain: 20 100
- Accessible front-end electronics

Technical aspects to be addressed

- Purity in non-evacuated tank
 <100 ppt of O₂ equivalent is required
- Large hanging field cage structure
- Very high voltage generation
- Large area charge readout
- Accessible cold front-end electronics
- Long term stability of UV scintillation light readout

Build and operate a large scale prototype (LBNO-Demo) to demonstrate the feasibility of LAGUNA-LBNO DLAr TPC design concept for O(10) kton detectors

WA105 physics case

LAr TPC provide a fully active homogeneous medium

Rich physics program based on test beam data

- Development and validation of automatic event reconstruction in LAr
- Assessment of PID performance
- Validation of e/π^0 rejection
- Study of energy resolution and scale for calorimetric measurement of electronics and hadronic showers
- Charged pions and proton cross sections on Ar nuclei
- Characterization of hadronic shower development at unprecedented granularity scale
 - Readout out pitch gives an area resolution of 3x3 mm²

WA105 collaboration

- LAPP. Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux
- OMEGA Ecole Polytechnique/CNRS-IN2P3
- UPMC, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE)
- APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/ IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité
- IRFU, CEA Saclay, Gifsur-Yvette
- Université Claude Bernard Lyon 1, IPN Lyon

Institut de Fisica d'Altes Energies (IFAE), Bellaterra (Barcelona)

- University of Glasgow
- University College London

- University of Jyväskylä
- University of Oulu
- Rockplan Ltd

- Horia Hulubei National Institute (IFIN-HH)
- University of Bucharest

- University of Geneva, Section de Physique,
- ETH Zürich

INFN-Sezione di Pisa

CERN

 High Energy Accelerator Research Organization (KEK)

 Faculty of Physics, St.Kliment Ohridski University of Sofia

 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

WA105 DLAr detector

7

Some detector parameters:

- Insulated membrane tank
- Inner volume 8.3x8.3x8.1 m³
- Active area 36 m²
- Drift length 6 m
- Total LAr mass 705 ton (~300 ton active)
- Hanging field cage & readout plane
- # of signal channels: 7680 in 12 signal FT

• # of PMTs: 36

WA105 at CERN

Extensions of EHN1 test beam facility at CERN Prévessin

Charge readout deck

CRP (Charge Readout Plane) structure

2 mm

Collection field 5kV/cm

1 cm

Ar

Extraction grid

2D Anode

1mm thick LEM (Large Electron Multiplier) 25-35 kV/cm

Multilayer PCB anode. 3.125 mm pitch

LEM: 500 μ m holes, 800 μ m pitch, 1mm thick FR4

Extraction grid: 100 μ m stainless still wires 3mm pitch in x and y

LEM and Anode

The charge readout plane is built from 50x50cm² LEMs and anode PCBs

Charge readout based on long-standing R&D efforts

Anode: multi-layer PCB with symmetric charge sharing between x-y views

Gain stability reproduced over several months

JINST 9 (2014) P03017

Geometry optimization: JINST 10 (2015) 03, P03017

WA105 plans to operate the LEMs at minimum gain of 20

Signal readout

μTCA crates with digital electronics

12 signal feed-through chimneys each collecting data from two 3x1 m² group of anodes (640 ch / chimney)

Provide access to the FE electronics without opening the main cryostat volume

Front-end and digital electronics

16 channel ASIC with CMOS-based preamplifiers

- Low noise due to ambient temperature of 110 K and proximity to anode(short cables)
- Power consumption 18mW/ch
- Large dynamic range up to 40 mip using double slope structure of the gain
- R&D since 2006

Digital electronics in warm zone on the tank deck

- DAQ system based on micro-TCA standards
- Readout frequency 2.5MHz
- Total time window of 4000 usec ← covers completely 6 m of drift

Scalability to large detectors (150k ch for 10 kton) at low cost

Light readout system

- Primary goal to provide T0 (and for underground operation trigger) for events
- For WA105 (surface operation) critical to tag cosmic ray muon arrival time
- 36 x 8" Hamamatsu R5912mod2 PMTs
- TPB coating to shift 128 nm to visible wavelengths

Two modes of acquisition:

- Internal trigger from PARISROC2 ASIC
- External beam trigger

WA105 in the global context

DLAr TPC design for DUNE

Double-phase charge readout with 12m x 60m segmented plane

• A unit detector is $3m \times 3m \rightarrow$ independent detector with its own signal and slow control feedthroughs, and suspension system.

Suspension

Summary

WA105 experiment will construct a double-phase LAr TPC with a ~300 ton fiducial mass

- Demonstrate double-phase technology for large LAr detectors
- Validate the technical designs developed by LAGUNA/LBNO
- Study detector performance with dedicated charged particle beam
- Start data taking by the end of 2017

Successful operation will open a door to exploiting double-phase LAr TPC detectors within the DUNE program

Thank you

Back-up material

WA105 detector fact sheet

Liquid argon density	T/m^3	1.38
Liquid argon volume height	m	7.6
Active liquid argon height	m	5.99
Hydrostatic pressure at the bottom	bar	1.03
Inner vessel size (WxLxH)	m^3	$8.3 \times 8.3 \times 8.1$
Inner vessel base surface	m^2	67.6
Total liquid argon volume	m^3	509.6
Total liquid argon mass	t	705
Active LAr area	m^2	36
Charge readout module (0.5 x0.5 m ²)		36
N of signal feedthrough		12
N of readout channels		7680
N of PMT		36

DUNE double-phase LAr TPC fact sheet

Parameter	Requirement	Achieved Elsewhere	Expected Performance
Gas phase gain	20	200	20-100
Electron Lifetime	3 ms	$>3~{ m ms}$ 35-t prototype	> 5 ms
Minimal S/N after 12 m drift	9:1	> 100:1	12:1-60:1

Item	Value(s)		
Active volume width and length	W = 12 m	L=60 m	
Active volume height	H = 12 m (H = 15 m)		
Active volume/LAr mass	8,640 (10,800) m ³	12,096 (15,	120) metric ton
Field ring vertical spacing	200 mm		Item
Field ring tube diameter	140 mm		Field rings
Anode plane size	W = 12 m	L = 60 m	CRP units LEM/Anode sadwid
CRP unit size	W = 3 m	L = 3 m	LEM/Anode sadwid
HV for vertical drift	600-900 kV		SFT chimneys / Cl
Resistor value	100 ΜΩ		SFT chimneys (tot
			Readout channels /

/	
Item	Number
Field rings	60 (75)
CRP units	$4 \times 20 = 80$
LEM/Anode sadwiches per CRP unit	36
LEM/Anode sandwiches (total)	2,880
SFT chimneys / CRP unit	3
SFT chimneys (total)	240
Readout channels / SFT chimney	640
Readout channels (total)	153,600
Suspension FT / CRP unit	3
Suspension FTs (total)	240
Slow Control FT / sub-anode	1
Slow Control FTs (total)	80
HV feedthrough	1
Voltage degrader resistive chains	4
Resistors (total)	240 (300)
PMTs (total)	180 (1/4 m ²)

GLACIER 20kt, 50kt: 4x4 m² modules

Each Charge Readout Plane is an independent detector

different geometries but all with the same functionality and identical construction sequence.

- *Each CRP has its own signal and HV feed throughs
- *Adjustable to LAr level
- *The LBNO demonstrator will have an enlarged 4x4 m² => 6x6m²

CRP alignment requirements

Tolerances are calculated to keep gain stability <5%

	[mm]	electric field $[kV/cm]$	tolerance [mm]
anode-LEM	2	5	0.1
LEM	1	34	0.01
LEM-grid	10	2	1
liquid level	5 (from grid)	-	1

TPC drift cage and HV

Large area LEMs

View from anode with signal (1), suspension (2), HV(3), PMT(4), manhole (5), detail insertion (6), clean room IN/OUT (7) nozzles

top view

ASIC (CMOS 0.35 um) 16 ch amplifiers working ~110 K to profit from minimal noise conditions:

- FE electronics inside chimneys, cards fixed to a plug accessible from outside
- Distance cards-CRP<50 cm
- Dynamic range 40 mips, (1200 fC) (LEM gain =20)
- 1300 e- ENC @250 pF, 100 keV sensitivity
- Single and double-slope versions
- Power consumption <18 mW/ch

DAQ in warm zone on the tank deck:

- architecture based on uTCA standard
- local processors replaced by virtual processors emulated in low cost FPGAs (NIOS)
- integration of the time distribution chain (improved PTP)
- Bittware S5-PCIe-HQ 10 Gbe backend with OPENCL and high computing power in FPGAs

