

Luca Stanco, INFN-Padova (for the OPERA collaboration)

Search for sterile neutrinos at Long-BL

- The present scenario and the "sterile" issue at 1 eV mass scale
- OPERA results for $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{e}$ searches
- Other results from MINOS and SuperK
- Perspectives and Conclusions

The "sterile" issue

From masses to flavours:

$$\begin{aligned} |\boldsymbol{v}_{e}\rangle &= \boldsymbol{U}_{e1}|\boldsymbol{v}_{1}\rangle + \boldsymbol{U}_{e2}|\boldsymbol{v}_{2}\rangle + \boldsymbol{U}_{e3}|\boldsymbol{v}_{3}\rangle \\ |\boldsymbol{v}_{\mu}\rangle &= \boldsymbol{U}_{\mu1}|\boldsymbol{v}_{1}\rangle + \boldsymbol{U}_{\mu2}|\boldsymbol{v}_{2}\rangle + \boldsymbol{U}_{e\mu3}|\boldsymbol{v}_{3}\rangle \\ |\boldsymbol{v}_{\tau}\rangle &= \boldsymbol{U}_{\tau1}|\boldsymbol{v}_{1}\rangle + \boldsymbol{U}_{\tau2}|\boldsymbol{v}_{2}\rangle + \boldsymbol{U}_{\tau3}|\boldsymbol{v}_{3}\rangle \end{aligned}$$

 ${\it U}$ is the 3 × 3 Neutrino Mixing Matrix mixing given by 3 angles, θ_{23} , θ_{12} , θ_{13}

transition amplitudes driven by $\Delta m_{solar}^2 = \Delta m_{21}^2$ $\Delta m_{atm}^2 = |\Delta m_{31}^2| \approx |\Delta m_{32}^2|$

The wonderful frame pinpointed for the 3 standard neutrinos, beautifully adjusted by the θ_{13} measurement, left out some relevant questions:

- Leptonic CP violation
- Mass values
- Dark Matter
- Anomalies and discrepancies in several results

The "sterile" issue (cnt.)

The previous picture is working wonderfully. So it should stay whenever extensions are allowed!

Exploit 3+1 or even 3+2 oscillating models, by adding one or more "sterile" neutrinos

$$\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \qquad P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2} 2\theta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right)$$

$$APPEARANCE$$

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right)$$

$$DISAPPEARANCE$$

$$when \Delta m_{21}^{2} << \Delta m_{31}^{2} << \Delta m_{41}^{2} \text{ and } |U_{s4}^{2}| \le 1$$

with
$$\sin^2 2\theta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2$$
 and $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$ for APPEARANCE $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$

$$\sin^{2} 2\theta_{ee} = 4 |U_{e4}|^{2} \left(1 - |U_{e4}|^{2} \right)$$

$$\sin^{2} 2\theta_{\mu\mu} = 4 |U_{\mu4}|^{2} \left(1 - |U_{\mu4}|^{2} \right)$$
for **DISAPPEARANCE**

sterile: not weakly interacting neutrinos (B. Pontecorvo, JETP, 53, 1717, 1967)

The "sterile" issue (cnt.)

- → Experimental hints for more than 3 standard neutrinos, at eV scale
- → Strong tension with any formal extension of 3x3 mixing matrix

v_e disappearance

Reactor anomaly ~2.5σ

Re-analisys of data on antineutrino flux from reactor short-baseline (L~10-100 m) shows a small deficit of

R=0.943 ±0.023

G.Mention et al, Phys.Rev.D83, 073006 (2011), A.Mueller et al. Phys.Rev.C 83, 054615 (2011).

Gallex/SAGE anomaly ~3σ

Deficit observed by Gallex in neutrinos coming from a ⁵¹Cr and ³⁷Ar sources

R = 0.76 + 0.09 - 0.08

C. Giunti and M. Laveder, Phys.Rev. C83, 065504 (2011), arXiv:1006.3244

v_e appearance

Accelerator anomaly ~3.8σ

Appearance of anti- v_e in a anti- v_μ beam (LSND). A. Aguilar et al. LSND Collaboration Phys. Rev. D 64 112007 (2001).

Confirmed (?) by miniBooNE (which also sees appearance of v_e in a v_{μ} beam) A.Aguilar et al. (MiniBooNE Collaboration) Phys.Rev.Lett. 110 161801 (2013)

No hint so far for

- v_{μ} disappearance
- v_{τ} appearance/disappearance

The oscillation scenario in terms of distance L from the source

 $[\]rightarrow$ for L/E >>1 the disappearance averages to ½ of mixing strength: $\sin^2(\Delta m^2L/4E)=0.5$

Tau appearance in the presence of a sterile neutrino (3+1)

$$P(Energy) = C^2 \sin^2 \frac{\Delta_{31}}{2} + \sin^2 2\theta_{\mu\tau} \sin^2 \frac{\Delta_{41}}{2}$$

$$\phi = Arg(U_{\mu 3}^* U_{\tau 4}^* U_{\tau 4}^*)$$

$$+ \frac{1}{2} C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin \Delta_{31} \sin \Delta_{41}$$

$$- C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41}$$

$$- C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41}$$

$$+ C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin^2 \frac{\Delta_{41}}{2}$$

$$+ C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin \Delta_{31} \sin^2 \frac{\Delta_{41}}{2}$$

At Long-Baselines and eV mass scale:
$$\sin \Delta_{41} pprox 0 \\ \sin^2 \frac{\Delta_{41}}{2} pprox \frac{1}{2}$$

$$egin{align} P(Energy) &= C^2 \sin^2rac{\Delta_{31}}{2} + rac{1}{2}\sin^22 heta_{\mu au} \ &+ C\sin2 heta_{\mu au}\cos\phi_{\mu au}\sin^2rac{\Delta_{31}}{2} \ &+ rac{1}{2}C\sin2 heta_{\mu au}\sin\phi_{\mu au}\sin\Delta_{31} \ \end{pmatrix}$$

Sensitive to mixing "sterile" angles, MH and phase CP-violation

Separate analyses for NH and IH and maximize Likelihood as $\,L(\phi_{\mu au},\sin^2 heta_{\mu au},C^2)$

Use $|\Delta m_{31}^2| = 0.00243 \text{ eV}^2$ for NH and 0.00238 eV^2 for IH

effective mixing of sterile with ν_{μ} and $~\nu_{\tau}$

effective mixing of standard $v_{\mu} - v_{\tau}$ oscillation

OPERA search for v_{τ} sterile "anomalies"

just published in JHEP, 6, 69 (2015) and arXiv:1503.01876, based on 4 taus' candidates

Separate analyses for "high" and low $|\Delta m^2_{41}|$

 $\sin^2 2\theta_{\mu\tau}$ < 0.116 at 90% C.L. when integrating over ϕ (quasi-equal results for NH and IH)

Note: 0.069 obtained if neglect interference terms

OPERA just observed a 5th candidate! (arXiv:1507.01417, submitted to PRL)

Channel		Expected b	Expected signal	Observed		
	Charm	Had. re-interac.	Large μ -scat.	Total		
au o 1h	0.017 ± 0.003	0.022 ± 0.006	_	0.04 ± 0.01	0.52 ± 0.10	3
au ightarrow 3h	0.17 ± 0.03	0.003 ± 0.001	_	0.17 ± 0.03	0.73 ± 0.14	1
$ au ightarrow \mu$	0.004 ± 0.001	_	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
au ightarrow e	0.03 ± 0.01	_	_	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5

NEW: preliminary update of the analysis with 5 v_{τ} candidates

 $|\Delta m_{41}^2| > 1 \text{ eV}^2$

(Raster-scan à la Feldman&Cousins)

 $\sin^2 2\theta_{\mu\tau} < 0.119$ at 90% C.L. when integrating over ϕ (quasi-equal results for NH and IH)

PRELIMINARY

Full analysis with GLOBES (matter effects, Δm^2_{21} included, profiled out on Δm^2_{31})

OPERA can perform similar analysis based on v_e observation

Old result from 2008+2009 data sample (30% of total): JHEP 4, 1307 (2013) and arXiv:1303.3953

		E<20 Gev
ν_{e} candidates	19	4
background	19.8±2.8	4.6

Compatible with expectation from intrinsic v_e component in the CNGS v_u beam: 0.9%

We may put rough limits to exclude mixing on θ_{14} with a 2 flavour model

Approximate analysis, see our previous result and e.g. A.Palazzo, PRD 91, 91301(R) (2015)

OPERA is extending the v_e analysis on the full data sample !

ν_e candidates selected by Emulsion Analysis

OPERA v_e candidates (preliminary plot)

E<20 GeV

$v_{\rm e}$ candidates (30% data)	19	4
$v_{\rm e}$ candidates (all data)	52	9

Good confirmation of v_e events from Electronic Detectors (via Boosted-Decision-Tree)

MINOS+ on ν_{μ} sterile "anomalies"

arXiv:1502.07715 arXiv:1504.04046

CC and NC searches:

- Excellent agreement with best-fit with 3 flavors
- Extended range in Δm^2 due to large energy span

Ongoing work on anti- v_{μ} mode running

Ongoing Analysis on $v_{\mu} \rightarrow v_{e}$

(Very recent blessed MINOS plots: public release at INFO2015 few days ago)

SuperK on v_{μ} sterile "anomalies"

(Sterile neutrino oscillation in Atmospheric Neutrinos)

Conclusions and perspectives

- The sterile issue at eV mass scale can be studied also at Long-Baseline ν_{μ} beams
- Many results from OPERA, MINOS, Super-K are already available
- New preliminary result from OPERA on possible v_{τ} sterile "anomalies" (presented at this conference)
- Soon new results (without too restrictive assumptions) from OPERA on v_e oscillation
- Expected soon new results from MINOS+ on v_e oscillation
- Sterile mixing, if it exists, corresponds to low values (order of 1%)
- New specific experiments should be settled and approved

BACKUP

OPERA search for v_{τ} sterile "anomalies"

JHEP, 6, 69 (2015) and arXiv:1503.01876, based on 4 taus' candidates

Number of expected v_{τ} sterile events

