Flux and Neutrino interaction model constraints using the T2K near detectors

Laura Zambelli (KEK) On behalf of the T2K collaboration

Outline:

- The T2K experiment
- Generation of T2K flux tuned to hadroproduction data
- T2K near detectors cross section model and measurement
- Flux \otimes cross section constraints to reduce uncertainties on neutrino oscillation measurement

The T2K experiment

T2K is a long baseline neutrino experiment in Japan from J-PARC (Tokai) to Kamioka

Super-Kamiokande 295 km from the target

NIM A**659,**106-135 (2011)

Neutrino source and near detectors at J-PARC

|| countries

~500 members

青森

出出

ランド

Laura Zambelli (KEK) - EPS 2015 - Flux and neutrino interaction at T2K

態本区

。 便见度 九州県

Neutrino source and near detectors at J-PARC

- J-PARC accelerator provides 30 GeV protons.
- Interactions in a 90 cm long graphite target produce hadrons, focussed by 3 horns running at ± 250 kA.
- (anti)- ν beam is made from the decay in flight of $\pi/\text{K}/\mu.$
- Muon neutrino beam is contaminated by wrong sign neutrinos and (anti)- $\nu_{\rm e.}$
- Off-axis beam technique allows us to have a neutrino beam peaked at the energy
 - maximizing the $\nu_{\mu} {\rightarrow} \nu_{\rm e}$ oscillation channel
 - reducing the high energy $\boldsymbol{\nu}$ interactions

Near detector complex at 280 m from the target

INGRID : On-axis

Monitors the stability neutrino flux and direction

 \rightarrow Beam direction is stable within 1 mrad

Cross section measurements are also

performed

ND280 : Off-axis

measures $\boldsymbol{\nu}$ interactions on water and carbon targets

Data collected

Accumulated protons on target : 11.04×10^{20} in total 7.00×10^{20} in \mathbf{v} mode 4.04×10^{20} in $\overline{\mathbf{v}}$ mode Analyzed protons on target for this presentation:
6.57×10²⁰ in ∨ mode
4.30×10¹⁹ in ⊽ mode for ND280 constraints
4.04×10²⁰ in ⊽ mode for INGRID and SK analysis

T2K strategy for oscillation parameters

T2K flux strategy

Generate the un-oscillated flux by simulation. External hadroproduction data (mainly from NA61/ SHINE experiment) are used to constrain the predictions from the generators.

NA61/SHINE provides 2 types of datasets:

60% of the flux (at peak energy) is directly tunable with the thin target data. Up to 90% once the replica target data will be implemented in the tuning.

Neutrino flux predictions tuned to external data

Most interactions leading to the production of a neutrino are tuned according to hadroproduction data. The multiplicity and the production cross section are taken into account.

NA61/SHINE has recently released the production of π^{\pm} , K[±], K⁰s and Λ from the **2009** thin target dataset. See A. Korzenev talk

Neutrino flux uncertainties

<u>beamline related uncertainties</u> : proton beam profile, off-axis angle, horn current & field, alignment <u>hadron interactions related uncertainties</u> : NA61 uncertainties, re-scattering secondary nucleon production tuned

At T2K peak energy, flux uncertainty has now decreased to a level of $\sim 10\%$!

Covariance matrix between detectors, ν flavor and run modes is computed

T2K cross section strategy

Uses most recent NEUT generator predictions : Acta Phys.Polon. **B40**, 2477-2489 (2009)

- Improved charged current quasi elastic (CCQE) description with Relativistic Fermi Gas + Random Phase Approximation
- Multi-nucleon ejection channel based on Nieves et al model implemented

T2K cross section strategy

NEUT cross section default parameters are tuned to external data:

 $\begin{array}{l} \mbox{MiniBooNE} \ \nu_{\mu} / \overline{\nu}_{\mu} \ \mbox{CCQE} \ (\mbox{in} \ d^2 \sigma / dT_{\mu} dcos \theta_{\mu}) \\ \mbox{Minerva} \ \nu_{\mu} / \overline{\nu}_{\mu} \ \mbox{CCQE} \ (\mbox{in} \ d\sigma / dQ^2) \end{array} \end{array}$

- SF+MEC

Cross section model uncertainties come from underlying model parameters and normalizations. As tensions appeared with some data, we also inflated the errors to take it into account.

Near detector constraints strategy

See L. Magaletti poster to learn more on cross section measurements at ND280

A binned Likelihood is adjusted to ND280 data (in bins of muon momentum and angle) taking into account the variation of the flux, cross section model and near detector model within their systematic uncertainties and correlations.

<u>v-mode data</u> :

 ν_{μ} interactions divided into 3 samples : CC0 $\pi,$ CC1 π and CCother

Muon momentum (MeV/c)

$\overline{\nu}$ -mode data :

 $\overline{\nu_{\mu}}$ interaction and $\overline{\nu}_{\mu}$ interactions are separated into 2 samples:

I tracks (CCItr) and >I tracks (CCNtr).

T2K near detector constraints : v-mode

The adjusted parameters are : one per flux bin cross section parameters like M_AQE/RES, Fermi momentum, MEC normalization,...

Clearly the data is in better agreement after the constraints

T2K near detector constraints : \overline{v} -mode

T2K near detector constraints

Conclusions

<u>Flux</u> :

- With the contribution of latest NA61 results, T2K flux uncertainties decreased to the level of 10%
- Implementation of NA61 replica target is ongoing and will contribute to a significant reduction of the T2K systematic uncertainties.

<u>Cross Section</u> :

• NEUT includes improved CCQE and CCRES models, as well as multi-nucleon interactions. Nominal NEUT parameters are tuned to external data (MiniBooNE, Minerva)

<u>T2K near detector constraints</u> :

- Taking all the available informations, in both neutrino and anti-neutrino modes, the constraints on flux⊗cross section uncertainties decrease to ~3%
- CC interactions on water will be added to the samples
- Near detector measurement uncertainties are still statistically dominated

Flux correlation matrix

Flux Prediction Correlation Matrix

ND280 fit : effect on cross section parameters

T2K Preliminary

Cross-section Model Parameter	Prior to ND280 Constraint	After ND280 Constraint
M_A^{QE} (GeV/ c^2)	1.150 ± 0.070	1.137 ± 0.034
CC 2p-2h ¹² C	0.27 ± 0.29	1.03 ± 0.17
CC 2p-2h ¹⁶ O	0.27 ± 1.04	1.03 ± 1.01
p _F ¹² C (MeV/c)	223.0 ± 12.3	222.7 ± 8.8
E _B ¹² C (MeV)	25.0 ± 9.0	23.9 ± 7.3
C ^A ₅ (0)	1.01 ± 0.12	0.862 ± 0.074
M_A^{RES} (GeV/ c^2)	0.95 ± 0.15	0.724 ± 0.052
I=1/2 Background	1.3 ± 0.2	1.49 ± 0.19
CC Coherent ¹² C	1.0 ± 1.0	0.02 ± 0.16
CC Other Shape	0.0 ± 0.4	0.02 ± 0.19

ND280 fit : effect on flux parameters

ND280 fit : effect on flux parameters

Flux and cross section parameters correlations

Near detector cross section measurement - pre-fit

Muon momentum (MeV/c)

Near detector cross section measurement - post-fit

Muon momentum (MeV/c)