

The LHCb High Level trigger in Run 2

Sascha Stahl, CERN,

on behalf of the LHCb collaboration,

EPS-HEP, Vienna, 22.-27.7.2015

The LHCb experiment

S. Stahl

Event selection at LHCb

- HLT, software trigger:
 - Running on large farm
 - Split in HLT1 and HLT2
 - Selects events for offline analysis

• Physics analysis

Online and offline

- Want calibrations and alignments immediately.

Deferred triggering

- Event Filter Farm doubled in Run 2:
 - 800 new nodes and 1000 old nodes, 50880 logical cores, 5 MCHF
- LHC stable beams 30% of time
 - \rightarrow 70% idle time
- Write data to disk, process between fills
 - 5000 TB in farm
- Run 1: Defer 20% of L0 accepted events
 - $\rightarrow 25\%$ more effective CPU power
- Run 2: Defer all HLT1 accepted events
 - \rightarrow Fewer events

• Calibration between HLT1 and HLT2 possible

HLT1 event reconstruction

- Improved sequence (Velo \rightarrow TT)
- Code optimization
- New offline:
 - PV fit only with Velo tracks
 - Kalman filter with fast geometry description
 - No performance degradation
 - \rightarrow Consistent PV and track parameters

HLT1 trigger

- Inclusive charm and beauty triggers:
 - Single and two track MVA selections $\rightarrow \sim 100 \text{ kHz}$
- Inclusive muon triggers:
 - Single and dimuon selections
 - Special low p_T track reconstruction
 - $\rightarrow \sim 40 \text{ kHz}$
- Exclusive triggers:
 - New lifetime unbiased trigger selections for hadronic charm and beauty decays

Real-time alignment and calibration

More details: P. Seyfert, Friday 27.7.,

"Novel real-time calibration & alignment and tracking performance for LHCb Run II"

- Alignment and calibration of detectors crucial for optimal physics performance
 - E.g. RICH particle identification $D^0 \to K^- \pi^+ \text{ vs. } D^0 \to K^- K^+$
- Automatic real-time procedures:
 - RICH calibration between HLT1 and HLT2
 - Tracker alignment during running, O(min)
 - Calorimeter calibration, RICH and Muon alignment monitored

 ²
 - Apply updates if necessary
- Minimizes time with suboptimal alignments and calibrations
- Online same alignments and calibrations as offline

HLT2 event reconstruction

- Full event reconstruction:
 - 1. Start from HLT1 vertices and tracks
 - 2. Reconstruct all tracks
 (Run 1 p_T>300 MeV, no redundancy)
 - 3. Full particle identification for long tracks (new)
- Same strategy as offline

Algorithm	Time	Run 1
Total HLT1	~ 35 ms	~ 20 ms
Track finding	~ 200 ms	
Full track fit	~ 100 ms	
RICH reconstruction	~ 180 ms	
Calo reconstruction	~ 50 ms	
Muon ID	~ 2 ms	
Total Hlt2	~ 650 ms	~ 150 ms

HLT2 trigger selection

- Inclusive beauty trigger:
 - MVA based inclusive selection of 2,3,4 body detached vertices
 - Di muon triggers for $B \rightarrow J/\Psi X$
- Exclusive beauty trigger:
 - E.g. $B \rightarrow \Phi \Phi$, $B \rightarrow \gamma \gamma$ (new) etc.
- Charm trigger:
 - Inclusive trigger on D* resonance
 - Many exclusive lines using particle identification
- Electroweak trigger
- ..
- Almost 400 different trigger selections
- Total output to storage 12.5 kHz (twice as in Run 1)

Turbo stream

- Online has offline quality
 → use it for physics analyses
- Turbo stream:
 - Write out full information of trigger candidates
 - Throw away raw event data
 - \rightarrow Saves a lot of space
- Ideal for analyses with very high signal yields (millions)
- Extremely quick turn around

Measurement of differential

I. Komarov, QCD 24.7., "First LHCb results from the 13 TeV LHC data"

Conclusion

- Larger farm, lots of hard work and smart ideas
- Online full event reconstruction including particle identification
- Consistent reconstruction online and offline
- Real-time calibration new to detectors of this scale
 - \rightarrow Much better trigger in Run 2 than in Run 1

• We still have more ideas...

Hardware trigger (L0)

- Reduce bunch crossing-rate to ~1 MHz
- Calorimeter trigger:
 - Hadrons:
 ET > 3.7 GeV, rate 500 kHz
 - Photons and electrons:
 ET > 3 GeV, rate 150 kHz
- Muon trigger
 - Single Muon: pt>1.76 GeV
 - Di Muon: (pt1*pt2) 1.6 GeV2
 - Rate 400 kHz
- Filters out very complex events
- Low multiplicity triggers

Event filter farm

- 900 nodes with 2TB disks, 800 nodes with 4TB disks
 - 900 Intel x5650, 100 AMD 6272, 800 Intel E5-2630v3 (new)
- 27040 physical cores, 50880 logical cores
- Almost doubled the performance from Run1 to Run2

Deferred triggering, Run1 and Run2

