
LHCb upgrade: plans and potential

Lнср

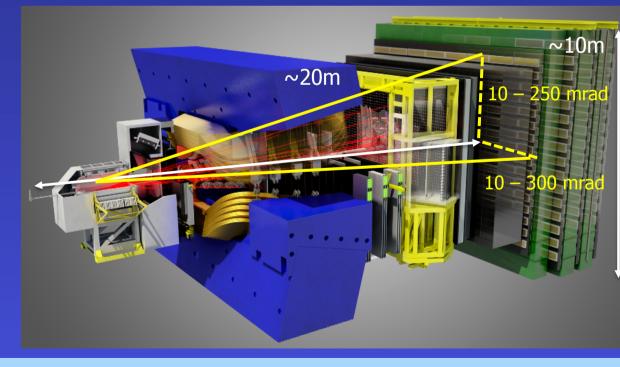
• LHCb

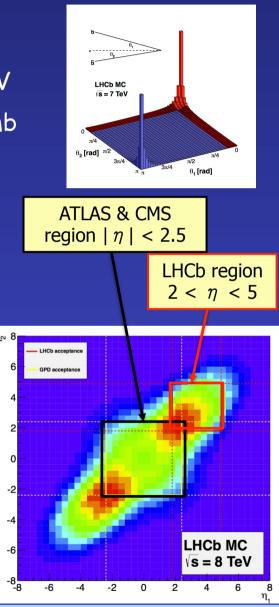
- Performance
- Highlights/plans
- LHCb Upgrade
 - Motivation
 - Trigger

LHCb Upgrade Physics Potential

- Rare decays
- CP violation
- Non-Flavour physics
- Detector upgrades
 - Trackers VELO, UT and SciFi
 - Particle ID RICH, CALO and Muon
- Conclusions

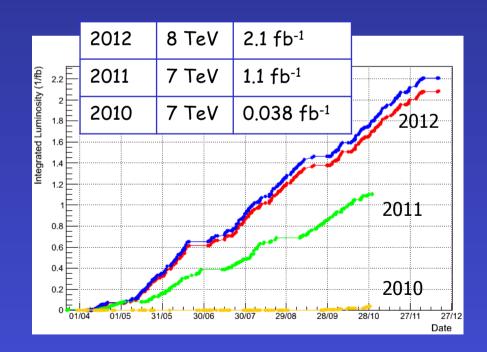
More information, see LHCb Ugrade TDRs

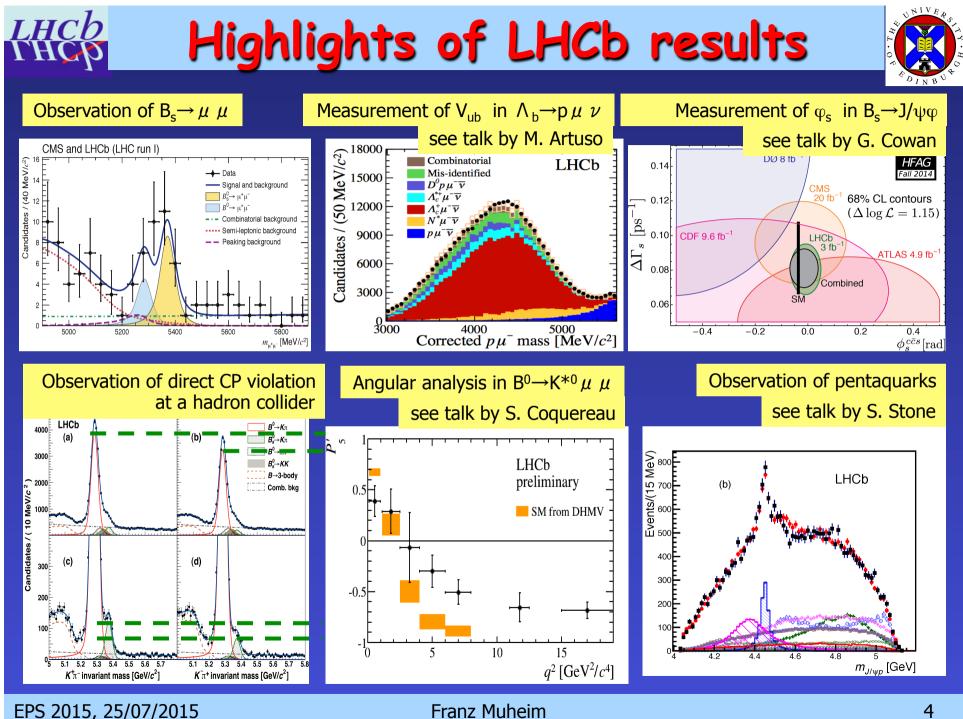

EPS 2015, 25/07/2015


LHCb Experiment

• LHC is a flavour factory

- beauty quark cross section $\sigma_{bb} \sim 300 \ \mu b$ at 7 TeV
- Very large charm cross section $\sigma_{cc} \sim 20 \sigma_{bb} \sim 6 \text{ mb}$
- LHCb
 - dedicated experiment for heavy flavour physics


LHCb Performance



Int. J. Mod. Phys. A 30, 1530022 (2015)

• Very successful in LHC run 1

- LHCb operated at luminosities up to L = 4×10^{32} cm⁻² s⁻¹
- 2x design luminosity
- Average # of visible interactions/crossing
 - $\mu = 1.4$ (nominal $\mu = 0.4$)
- Recorded ∫Ldt ~ 3 fb⁻¹

LHCb ГНСр

LHCb Plans/Upgrade

see talk by I. Komarov

First LHCb results from the 13 TeV LHC data

- LHC Run 2 collect ~5 fb⁻¹ of data
 - 7, 8 \rightarrow 13 (14) TeV: nearly double b and c production
 - Precision measurements of unitarity triangles
 - Measure rare decays
 - Probe/measure New Physics at 10% level in key measurements
 - Be prepared for the unexpected \rightarrow follow the data
 - Current detector limited to 1 MHz readout by Level-O trigger
- LHCb upgrade
 - Upgrade detectors to be able to readout at 40 MHz
 - Operate detector at luminosities of $\sim 2 \times 10^{33}$ cm⁻² s⁻¹
 - Install upgraded LHCb in long shutdown LS2 2019/20

LHC era			HL-LHC era		
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-23)	Run 4 (2025-28)	Run 5+ (2030+)	
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹	

EPS 2015, 25/07/2015

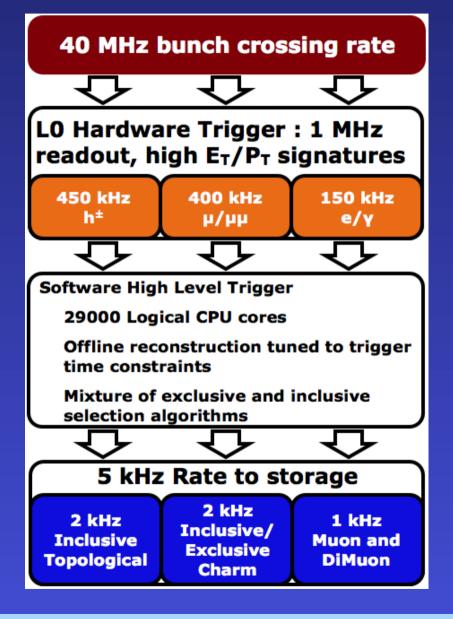
LHCb Upgrade Motivation

• Excellent results from LHCb

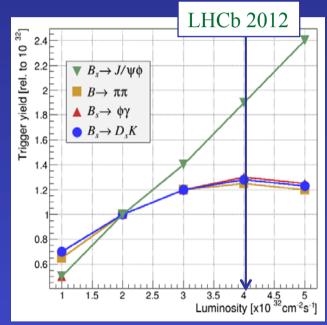
- Demonstrated potential of Flavour Physics at the LHC
- Many world's best measurements, severely constrain new physics

• LHCb upgrade physics reach

- Unique for NP searches in B_s system, very competitive for B_d
- Unprecedented B-baryon and charm yields
- Potential for non-flavour physics


• LHCb upgrade will fully exploit LHC physics in forward region

- General purpose experiment with forward geometry
- LHCb upgrade will operate at higher luminosity
- is compatible with high luminosity LHC phase, but does not require it
- Complementary to direct searches at ATLAS and CMS
- If new particles are discovered
 - LHCb upgrade will measure flavour couplings through loop diagrams
- If no new particles are found
 - LHCb upgrade will probe NP at multi-TeV energy scale


LHCb Trigger

Level-O Hardware trigger

- limited to 1 MHz output
- Event yields saturate for hadronic channels

HLT Software trigger Transported in CDU f

Implemented in CPU farm

EPS 2015, 25/07/2015

Signal and background $B_s^0 \rightarrow \mu^* \mu^ B_s^0 \rightarrow \mu^* \mu^-$

Combinatorial background Semi-leptonic background Peaking background

5800

 $m_{\mu^*\mu^-}$ [MeV/ c^2]

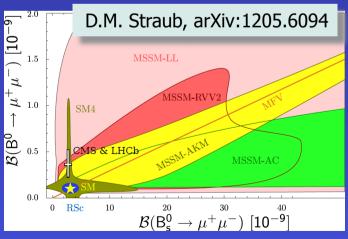
Phys. Rev. Lett. 111 (2013) 101805

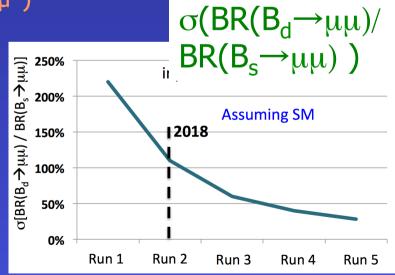
5400

Nature 522, 68-72

CMS and LHCb (LHC run I)

Candidates / (40 Me) 8 01 7 11 8


5000


• LHCb

- Observed $B_s \rightarrow \mu^+ \mu^-$, with CMS at 6.2 σ significance
- BR(B_s $\rightarrow \mu^{+}\mu^{-}$) = (2.8 +0.7-0.6) x 10⁻⁹
- 3σ evidence for $B_d \rightarrow \mu^+ \mu^-$
- NP SUSY models with large tan β ruled out

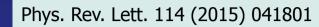
• LHCb upgrade

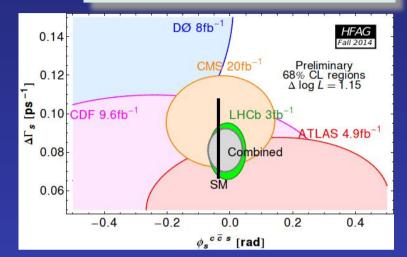
- Precision measurement of $BR(B_s \rightarrow \mu^+\mu^-)$
 - 50 events/year at SM
- Measure $BR(B_d \rightarrow \mu^+\mu^-)/BR(B_s \rightarrow \mu^+\mu^-)$
- Very sensitive to NP models

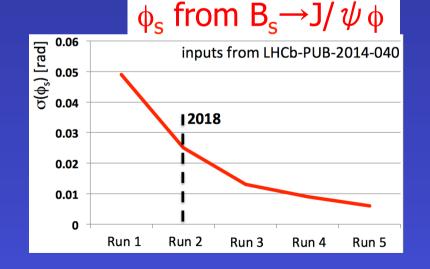
EPS 2015, 25/07/2015

Franz Muheim

CP Violation in $B_s \rightarrow J/\psi \phi$

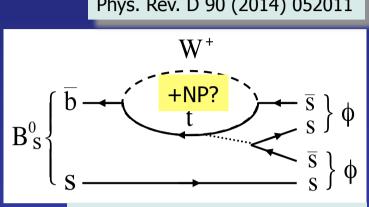

10


• Weak phase ϕ_s

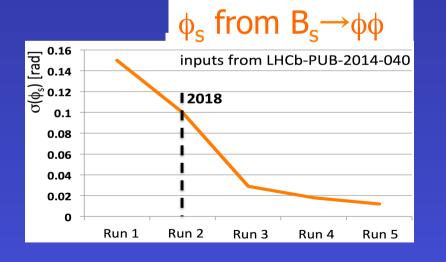

- Small and precise SM prediction
- SM $\phi_s = -36.3 \pm 1.3$ mrad
- Sensitive to new physics
 in B_s mixing and decay amplitude

• LHCb

- Golden mode $B_s \rightarrow J/\psi K^*K$ $\phi_s = -58 \pm 49 \pm 6 \text{ mrad}$
- Additional modes
 B_s→J/ψπ⁺π⁻ and B_s→D_s⁺D_s⁻
- LHCb dominates world average
 \$\overline{\phi_s}\$ = -15 ± 35 mrad
- LHCb upgrade
 - Sensitivity $\sigma(\phi_s) \sim 10 \text{ mrad}$
 - Compare to $\sigma(\phi_s, \text{ theory}) \sim 3 \text{ mrad}$



Franz Muheim


$B_s \rightarrow \phi \phi$ is golden mode for upgrade

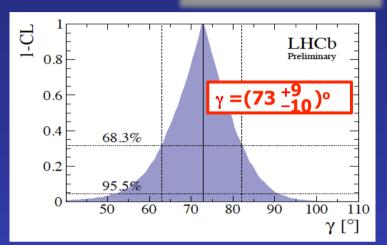
CP Violation in B_s-

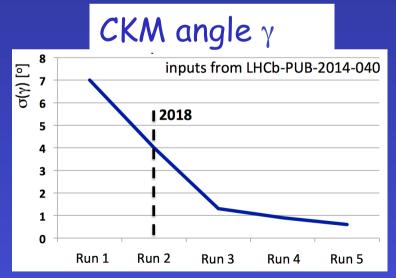
- probe CP violating weak phase ϕ_s in hadronic B_s penguin decays
- Sensitive to new physics in decay amplitude
- Prediction for ϕ_s very close to zero
- LHCb results on $B_s \rightarrow \phi \phi$
 - φ_s = -170 ± 150 ± 30 mrad
- LHCb upgrade
 - Sensitivity $\sigma(\phi_s) \sim 0.02$
 - Comp. to $\sigma(\phi_s, \text{ theory}) \leq 0.02$
 - Non zero ϕ_s result \rightarrow New Physics

M. Raidal, arXiv:hep-ph/0209091 M. Bartsch et al., arXiv:0810.0249

Phys. Rev. D 90 (2014) 052011

LHCb ГНСр




B factories

- Excellent progess during last decade
- Babar γ = 69 +17 -16 °
- Belle γ = 68 +15 -14 °

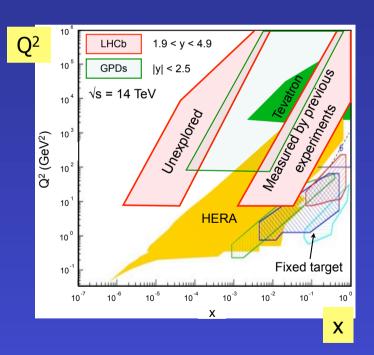
• LHCb

- Combining many methods
 ADS, GLW, GGSZ, B_S→D_SK
- Starting to dominate γ world average
- Expect 4° uncertainty on γ at end of run 2
- LHCb upgrade
 - Aiming for < 1° precision on γ

LHCB-CONF-2014-004

EPS 2015, 25/07/2015

EPS 2015, 25/07/2015


Franz Muheim

Non-Flavour Physics

13

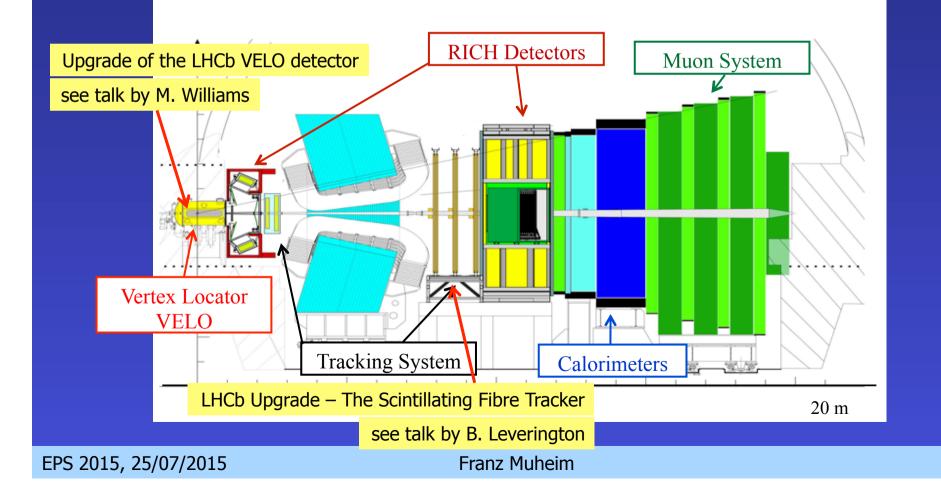
• Electroweak

- sin² θ_{eff}^{lepton} : measure A_{FB} of leptons in Z-decays
- Top quark forward-backward asymmetry
- QCD
 - Constraints on PDFs, unexplored region at low x
 - Flavour tagging of jets
- Central Exclusive Production
 - $pp \rightarrow p + X + p$ with rapidity gap
 - Central exclusive χ_b production
- Exotics
 - Tetra- and Pentaguarks
 - Hidden Valley long-lived particles
- Heavy Ions
 - pA, Ap and AA collisions in forward region
- Higgs
 - $H \rightarrow cc$ and $H \rightarrow bb$ in VBF

Hicp LHCb Upgrade Physics Reach

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	$0.17 \ [10]$	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma) / au_{B^0_s}$	_	5~%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[14]	6 %	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	$0.25 \ [15]$	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Omtarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 1012^{\circ} [19, 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	—
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_

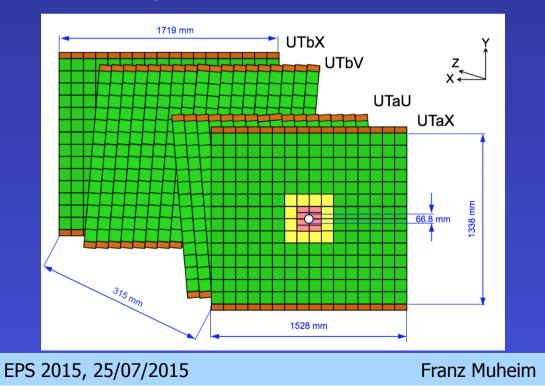
EPS 2015, 25/07/2015

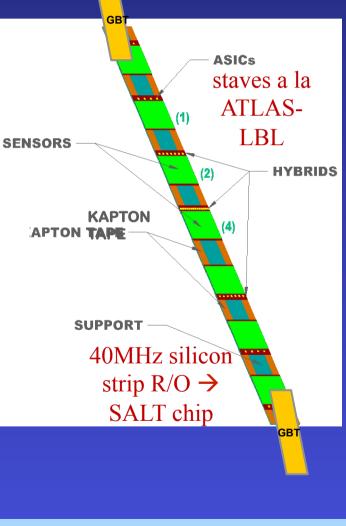


Detector upgrade

Replace or adapt sub-systems to 40 MHz readout

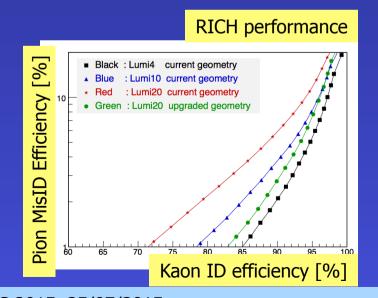
- Approved by LHCC & funding agencies, have Technical Design Reports
- Construction phase from 2015 to 2018, installation in LS2

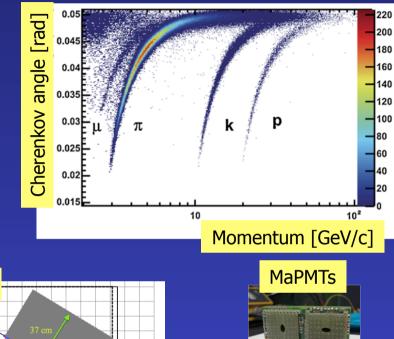


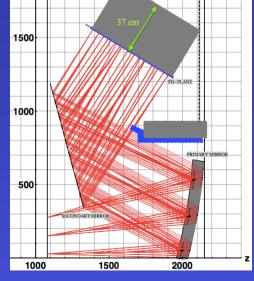

Upstream tracker - UT

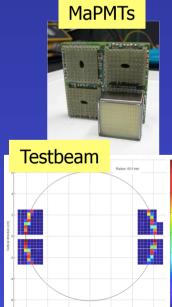
• UT replaces TT tracker

- Silicon strip sensors with finer granularity in high occupancy region
- Improved coverage at small polar angles
- Readout and Signal processing at 40 MHz
- Improved radiation hardness


LHCb


RICH PID upgrade

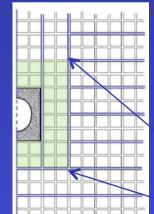

RICH 1

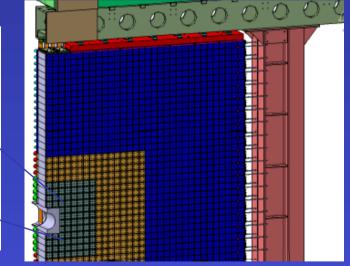


- Maintain excellent charged PID
- RICH photon detectors
 - MaPMTs replace HPDs
- Upgraded RICH
 - Remove aerogel radiator
 - RICH 1 optimised to reduce hit occupancy

EPS 2015, 25/07/2015

LHCD Calorimeter & Muon Upgrade




• HCAL & ECAL

- HCAL modules ok up to ~50 fb-1
- Inner ECAL modules need to be replaced after ~20 fb-1 (LS3)
- Keep detector modules and PMTs
- Reduce PMT gain, increase FE amplification
- Modify 40 MHz FE electronics

Muon Spectrometer

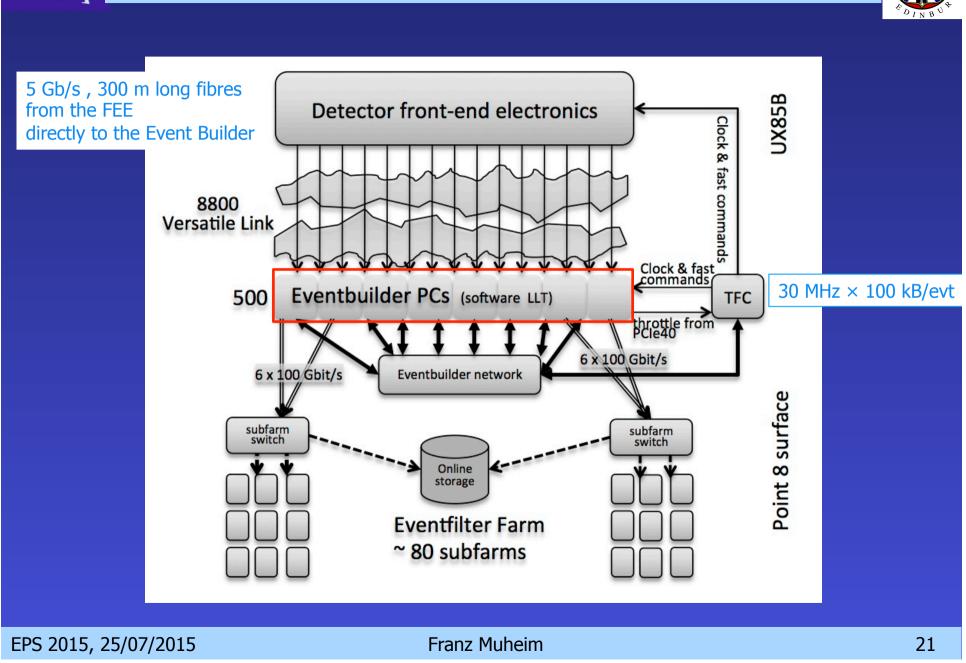
- Keep muon chambers
 & FE electronics
- Replace off-detector electronics
- Remove first station (M1)
- Install shielding

EPS 2015, 25/07/2015

LHCb ГНСр

Conclusions

- LHCb and Flavour physics at the LHC are a huge success
 - Large NP ruled out in many flavour physics observables
 - Large increase in statistics required to investigate small NP deviations
- LHCb upgrade is approved and progressing well
 - Key element is 40 MHz readout of all sub-detectors
 - Full Software Trigger increases trigger efficiency significantly in hadronic channels
 - LHCb key performance parameters are retained
 - Vertex Resolution, Track reconstruction efficiency, Particle Identification
 - Installation of upgraded LHCb in Long Shutdown LS2 in ~2019/20
 - Operation in LHC Run 3 and Run 4 (HL-LHC)
- LHCb Upgrade is General Purpose Experiment for Forward region
 - Beauty, Charm, LFV, Electroweak, QCD, Exotica, Heavy Ion
 - Probe/measure New Physics at the percentage level



EPS 2015, 25/07/2015

Readout Architecture

LHCh

Charm physics

• A_{Γ} , WS K π , ΔA_{CP}

- measurements with small systematics due to cancellations
- No limiting uncertainty known so far
- $\gamma_{CP} \equiv \tau_{K\pi} / \tau_{KK} 1 \approx \gamma$
 - Comparison of two different final states
- LHCb upgrade
 - Will collect unprecedentedly large charm samples
 - Scaling sensitivities with $\int N$

Run	x [10 ⁻³]	y [10 ⁻³]	q/p [10 ⁻³]	φ [mrad]
1	1.22	0.53	59	89
2	0.92	0.37	44	70
3	0.42	0.15	20	33
4	0.25	0.09	12	20

EPS 2015, 25/07/2015

LHCb ГНСр

LHCb far future

Scope of LHCb upgrade

- Plan to collect data set of 50/fb by Long Shutdown LS4

• LHC will continue to operate

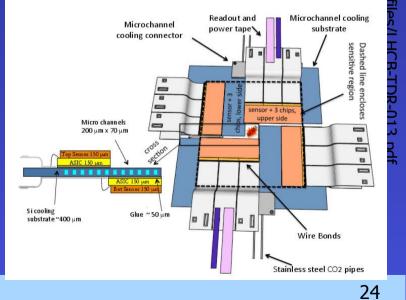
- beyond LS4 into 2030s
- HL-LHC will be most copious source of heavy flavour particles

• Physics case for LHCb in 2030s

- forward spectrometer operating at O(10³⁴/cm²/s)
- accumulate O(500/fb)
- ECFA HL-LHC studies give mandate to discuss
- Many flavour observables will become systematics or theory limited
- Ideas: $Bs \rightarrow \mu\mu$ effective lifetime, $H \rightarrow cc$
- Will hopefully get guidance from data in Run 2
- Need to leave no stone unturned

VELO upgrade

• Key Issues and challenges

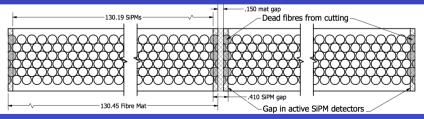

- increased radiation (highly non-uniform)
 8.10¹⁵ n_{ea}/cm² for 50 fb⁻¹
- handle high data volume
- improve current performance
- lower material budget
- enlarge acceptance
- VELO pixel detector
 - Silicon pixels sensors of 55 × 55 µm²
 - Sensor thickness: 300 $\mu m \rightarrow$ 200 μm
 - Aluminum RF foil: $300 \ \mu m \rightarrow \le 250 \ \mu m$
 - 40 MHz VeloPix chip based on CMOS 130 nm technology
 - Radiation hard up to 400 MRad
 - Micro channel CO₂ cooling 25/07/2015 Franz Muheim

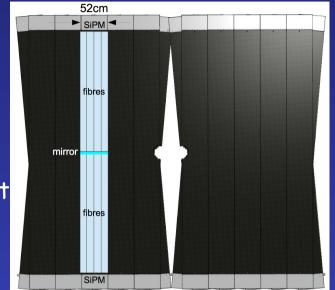
EPS 2015, 25/07/2015

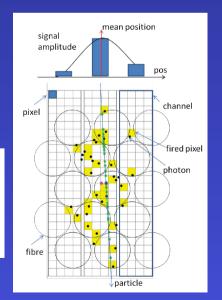
Upgrade of the LHCb VELO detector

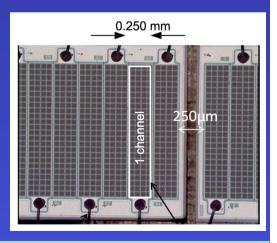
VELO module

Downstream tracker - '




• Scintillating Fibre Tracker


- single technology will replace
 Straw (OT) and silicon IT tracker
- Covering full acceptance: $5 \times 6 \text{ m}^2$
- Uniform material budget: X/X₀ = 2.6% per st
- multiple layers of 2.5 m long scintillating fibres of 250 µm diameter


Readout

- The fibres are read by SiPM
- SiPMs cooled to -40°C.
- 60 100 µm spatial resolution

EPS 2015, 25/07/2015

