LHC phenomenology of light pseudoscalars in the NMSSM, 1409.8393, 1503.04228

N.-E. Bomark¹ S. Moretti², S. Munir³, L. Roszkowski¹

> ¹NCBJ, Warsaw ²University of Southampton ³APCTP, Pohang

July 23, 2015/ EPS-HEP, Vienna

Outline

NMSSM and light pseudoscalars

The NMSSM Scanning the NMSSM

LHC analyses

Cuts and analyses Results

Future prospects and conclusions

Summary of results

Outline

NMSSM and light pseudoscalars
The NMSSM
Scanning the NMSSM

LHC analyses
Cuts and analyses
Results

Future prospects and conclusions Summary of results Conclusions

Why the NMSSM?

- The NMSSM relates the only dimensionful supersymmetric parameter, μ, to the soft SUSY breaking scale.
- Additional contributions to the Higgs mass makes it easier to accommodate the measure 125 GeV, as compared to the MSSM.
- The potential presence of light singlet-like scalars and/or pseudoscalars (as well as singlino) may significanty alter the phenomenology.

Why the NMSSM?

- The NMSSM relates the only dimensionful supersymmetric parameter, μ, to the soft SUSY breaking scale.
- Additional contributions to the Higgs mass makes it easier to accommodate the measure 125 GeV, as compared to the MSSM.
- The potential presence of light singlet-like scalars and/or pseudoscalars (as well as singlino) may significanty alter the phenomenology.

Why the NMSSM?

- The NMSSM relates the only dimensionful supersymmetric parameter, μ, to the soft SUSY breaking scale.
- Additional contributions to the Higgs mass makes it easier to accommodate the measure 125 GeV, as compared to the MSSM.
- The potential presence of light singlet-like scalars and/or pseudoscalars (as well as singlino) may significanty alter the phenomenology.

Light pseudoscalar

NMSSM has 3 neutral scalars and 2 neutral pseudoscalars. The $H_{\rm SM}$ is the non-singlet-like of H_1 and H_2 .

The singlet-like scalar and pseudoscalar might be very light without conflict with data.

 m_{A_1} is essentially a free parameter in the theory. m_{A_2} , m_{H_3} and m_{H^\pm} are all similar and typically $\gtrsim 400$ GeV

Light pseudoscalar

NMSSM has 3 neutral scalars and 2 neutral pseudoscalars.

The $H_{\rm SM}$ is the non-singlet-like of H_1 and H_2 .

The singlet-like scalar and pseudoscalar might be very light without conflict with data.

 m_{A_1} is essentially a free parameter in the theory.

 m_{A_2} , m_{H_3} and $m_{H^{\pm}}$ are all similar and typically $\gtrsim 400~{\rm GeV}$

Light pseudoscalar

NMSSM has 3 neutral scalars and 2 neutral pseudoscalars.

The H_{SM} is the non-singlet-like of H_1 and H_2 .

The singlet-like scalar and pseudoscalar might be very light without conflict with data.

 m_{A_1} is essentially a free parameter in the theory. $m_{A_2},\,m_{H_3}$ and m_{H^\pm} are all similar and typically \gtrsim 400 GeV.

Detecting a light pseudoscalar

- ▶ Indirect effects in B-physics may be seen for m_{A_1} < 10 GeV.
- ▶ Direct production through associated production, $b\bar{b}A_1$. But looks unlikely, maybe feasible for $m_{A_1} < 10$ GeV.
- ▶ Indirect production; e.g. $H \rightarrow A_1A_1$ and $H \rightarrow A_1Z$.

Detecting a light pseudoscalar

- ▶ Indirect effects in B-physics may be seen for m_{A_1} < 10 GeV.
- ▶ Direct production through associated production, $b\bar{b}A_1$. But looks unlikely, maybe feasible for $m_{A_1} < 10$ GeV.
- ▶ Indirect production; e.g. $H \rightarrow A_1A_1$ and $H \rightarrow A_1Z$.

Detecting a light pseudoscalar

- ▶ Indirect effects in B-physics may be seen for m_{A_1} < 10 GeV.
- ▶ Direct production through associated production, $b\bar{b}A_1$. But looks unlikely, maybe feasible for $m_{A_1} < 10$ GeV.
- ▶ Indirect production; e.g. $H \rightarrow A_1A_1$ and $H \rightarrow A_1Z$.

The scan

Bayesian scan using MultiNest, see 1409.8393 for details.

- ▶ $122 < m_{H_{SM}} < 129 \text{ GeV},$
- ▶ $m_{A_1} \lesssim 150$ GeV,
- $\Omega_{\chi} h^2 < 0.131$,
- ▶ BR(B_s $\rightarrow \mu^{+}\mu^{-}$) = (3.2 ± 1.35 ± 0.32) × 10⁻⁹,
- ▶ BR(B_u $\rightarrow \tau \nu$) = (1.66 ± 0.66 ± 0.38) × 10⁻⁴,
- ► BR($b \to s\gamma$) = $(3.43 \pm 0.22 \pm 0.21) \times 10^{-4}$.

ATLAS:
$$\mu^{\gamma\gamma} = 1.57^{+0.33}_{-0.28}$$
, $\mu^{ZZ} = 1.44^{+0.40}_{-0.35}$.
CMS: $\mu^{\gamma\gamma} = 1.13 \pm 0.24$, $\mu^{ZZ} = 1.0 \pm 0.29$.

Outline

NMSSM and light pseudoscalars The NMSSM Scanning the NMSSM

LHC analyses
Cuts and analyses
Results

Future prospects and conclusions Summary of results Conclusions

Analyses

Analyses done using MadGraph (for backgrounds), pythia and fastjet.

All events must satisfy:

- $|\eta|$ < 2.5 for all final state objects,
- $p_T > 15$ GeV for all final state objects,
- $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.2$ for all *b*-quark pairs,
- $ightharpoonup \Delta R > 0.4$ for all other pairs of final state objects.

In addition kinematic constraints on invariant masses are used, as well as jet substructure methods (0802.2470) to find "fat b-jets".

Available channels

 $H_{1,2} \to A_1 Z$ and $H_3 \to A_1 A_1$ hopeless due to small rates. $H_{1,2} \to A_1 A_1$ and $H_3 \to A_1 Z$ interesting for further study.

 $H_{1,2,3}$ can be produced through gluon fusion (GF), vector boson fusion (VBF) or Higgsstrahlung (ZH and WH). But H_3 only doable through GF.

GF and VBF gives higher rates but larger backgrounds, GF most promising. $bb\tau\tau$ or $bb\mu\mu$ most promising final state.

ZH (with $Z \rightarrow ee, \mu\mu$) has almost no background but small signal.

WH ($W \to e\nu, \mu\nu$) has bigger backgrounds (from $t\bar{t}$ and $b\bar{b}t\bar{t}$) but shows some promise for low masses.

Available channels

 $H_{1,2} \to A_1 Z$ and $H_3 \to A_1 A_1$ hopeless due to small rates. $H_{1,2} \to A_1 A_1$ and $H_3 \to A_1 Z$ interesting for further study.

 $H_{1,2,3}$ can be produced through gluon fusion (GF), vector boson fusion (VBF) or Higgsstrahlung (ZH and WH). But H_3 only doable through GF.

GF and VBF gives higher rates but larger backgrounds, GF most promising. $bb\tau\tau$ or $bb\mu\mu$ most promising final state.

ZH (with $Z \rightarrow ee, \mu\mu$) has almost no background but small signal.

WH ($W \to e\nu, \mu\nu$) has bigger backgrounds (from $t\bar{t}$ and $b\bar{b}t\bar{t}$) but shows some promise for low masses.

Available channels

 $H_{1,2} \to A_1 Z$ and $H_3 \to A_1 A_1$ hopeless due to small rates. $H_{1,2} \to A_1 A_1$ and $H_3 \to A_1 Z$ interesting for further study.

 $H_{1,2,3}$ can be produced through gluon fusion (GF), vector boson fusion (VBF) or Higgsstrahlung (ZH and WH). But H_3 only doable through GF.

GF and VBF gives higher rates but larger backgrounds, GF most promising. $bb\tau\tau$ or $bb\mu\mu$ most promising final state.

ZH (with $Z \rightarrow ee, \mu\mu$) has almost no background but small signal.

WH ($W \rightarrow e\nu, \mu\nu$) has bigger backgrounds (from $t\bar{t}$ and $b\bar{b}t\bar{t}$) but shows some promise for low masses.

Sensitivity in the $H_{\rm SM} \to A_1 A_1$ channel

Some reach but few points due to conflict with signal rates.

Sensitivity in the $H_{\text{non-SM}} \rightarrow A_1 A_1$ channel

For $H_2 = H_{\rm SM}$, $m_{A_1} \lesssim 60$ GeV can be almost excluded.

Sensitivity in $WH_{1,2} \rightarrow WA_1A_1$, $H_2 = H_{SM}$

Complementary at least for smaller masses.

Sensitivity in $H_3 \rightarrow A_1 Z$ channel

Interesting channel for further study.

Outline

NMSSM and light pseudoscalars
The NMSSM
Scanning the NMSSM

LHC analyses
Cuts and analyses
Results

Future prospects and conclusions Summary of results Conclusions

Detectability ranges

Production mode	Channels	Accessibility	Range (GeV)
$bar{b}A_1$		X	
$H_1 \rightarrow A_1 A_1 (H_1)$	gg, VBF, VH	√ 300/fb	$m_{A_1} < 63$
$H_1 \rightarrow A_1 A_1 (H_2)$	gg, VBF, VH	√ 30/fb	$m_{A_1} < 60$
$H_1 ightarrow A_1 Z$		X	
$H_2 \rightarrow A_1 A_1 \ (H_1)$	gg, VBF	√ 300/fb	$60 < m_{A_1} < 80$
$H_2 \rightarrow A_1 A_1 (H_2)$	gg, VBF, VH	√ 30/fb	$m_{A_1} < 63$
$H_2 ightarrow A_1 Z$		X	
$H_3 ightarrow A_1 A_1$		X	
$H_3 o A_1 Z$	<i>99</i>	√ 300/fb	$ 60 < m_{A_1} < 120 $

Conclusions

- Due to the extra singlet, the NMSSM may feature a very light pseudoscalar.
- In the most natural region (large λ , small tan β) the LHC will practically exclude $m_{A_1} < 60$ GeV.
- ▶ For somewhat heavier pseudoscalars, $H_3 \rightarrow A_1 Z$ is a very interesting channel.
- For the non-SM-like of H₁,2 these channels might be the only way for discovery.

For an experimental perspective on the 4τ final state in similar models, see poster by Robin Aggleton, CMS