

Global Dark Matter limits from a combined analysis of MAGIC and Fermi-LAT data

Javier Rico IFAE

+ <u>M.Wood (SLAC)</u>+ <u>J.Aleksić (IFAE)</u> + <u>A. Drlica-Wagner (FNAL)</u> for the MAGIC and Fermi-LAT Collaborations

EPS-HEP 2015 - Vienna 23 July 2015

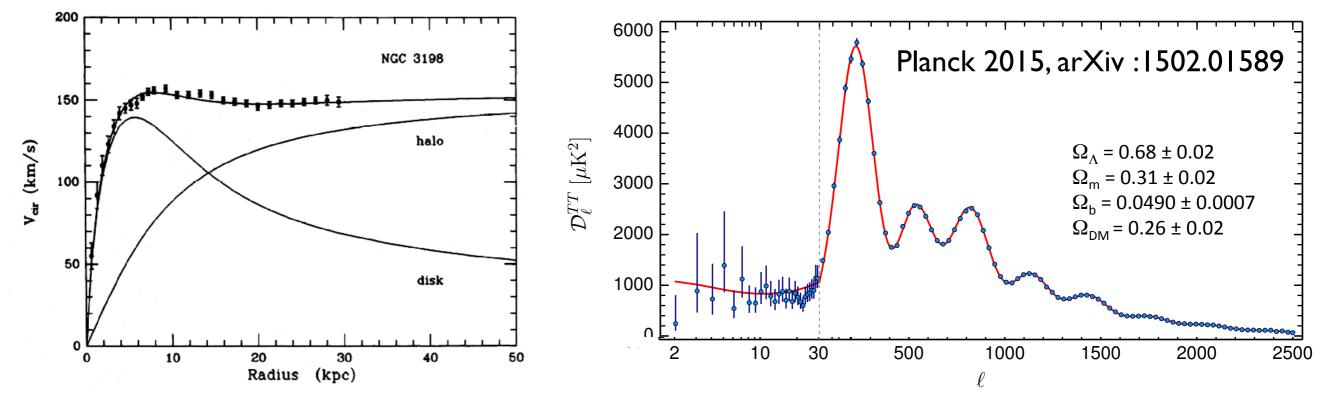
Outline

★ Dark matter

★ Instruments and data samples

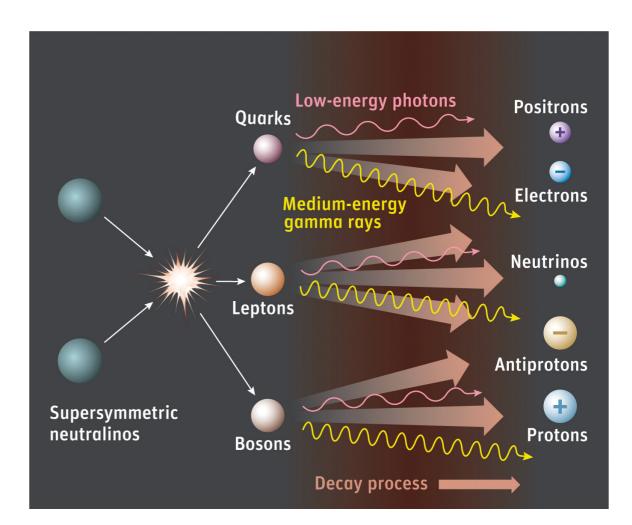
- MAGIC
- Fermi-LAT
- ★ Analysis
- ★ Results
- Discussion/Conclusions

Dark Matter


★ Dark Matter:

- ~85% of matter content in the Universe
- Interacts gravitationally at all scales
- Left its imprint in the CMB

DISTRIBUTION OF DARK MATTER IN NGC 3198

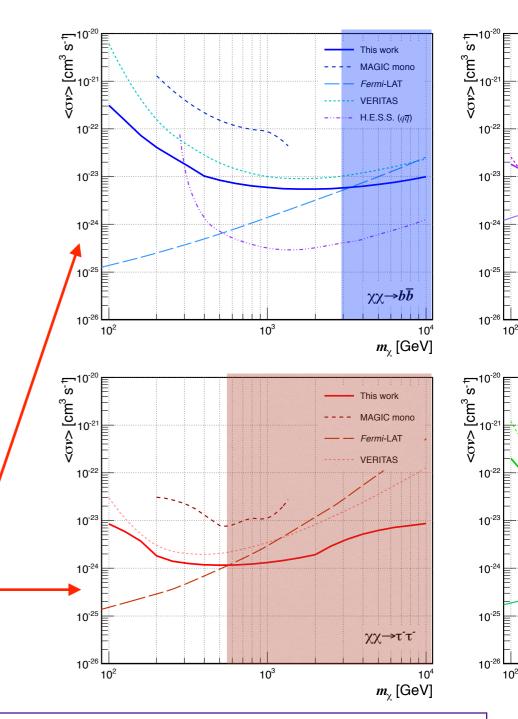

- Mass range between ~10 GeV and ~10 TeV
- Can produce correct relic density for interaction cross section typical of weak scale
- Predicted by many SM extensions (e.g. SUSY)

Indirect dark matter searches

- Search for SM products of annihilation or decay of DM particles
- Allow exploration of the unique spectral features of DM-processes (e.g. lines, IB peaks, kinematical cutoffs...)
- For neutral particles (neutrino, gamma), messengers points back to DM sites

Indirect searches needed to confirm signals in direct or accelerator searches are THE dark matter

The MAGIC Telescopes


- Collaboration of ~160 scientists from Germany, Spain, Italy, Switzerland, Finland, Croatia, Bulgaria, Poland, India & Japan
- ★ 2-telescope system (MAGIC-1 2004, MAGIC-2 2009)
- ★ 17m diameter reflectors → 50 GeV energy threshold, up to ~10 TeV
- ★ Angular resolution 0.1°; Energy resolution ~15-25%
- ★ Pointed observations: ~0.1-0.2° aperture

DM searches with MAGIC

★ MAGIC indirect dark matter searches:

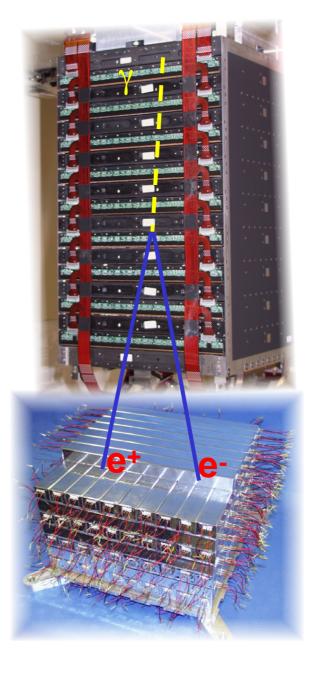
- Galactic Center:
 - (17 h) ApJ Lett. 638 (2006) L101
- Perseus Galaxy Cluster
 - (25 h) ApJ 710 (2010) 634
 - (~300 h) In preparation (decay)
- Dwarf Galaxies:
 - Draco (8 h): ApJ 679 (2008) 428
 - Willman 1 (16 h): ApJ 697 (2009) 1299
 - Segue 1 (30 h): JCAP 06 (2011) 035
 - Segue 1 (160 h): JCAP 002 (2014) 008
- Subhalos
 - (~15 h): In preparation



Best limits from dwarfs in high mass range!

Fermi Large Area Telescope

Atwood, W. B. et al. 2009, ApJ, 697, 1071

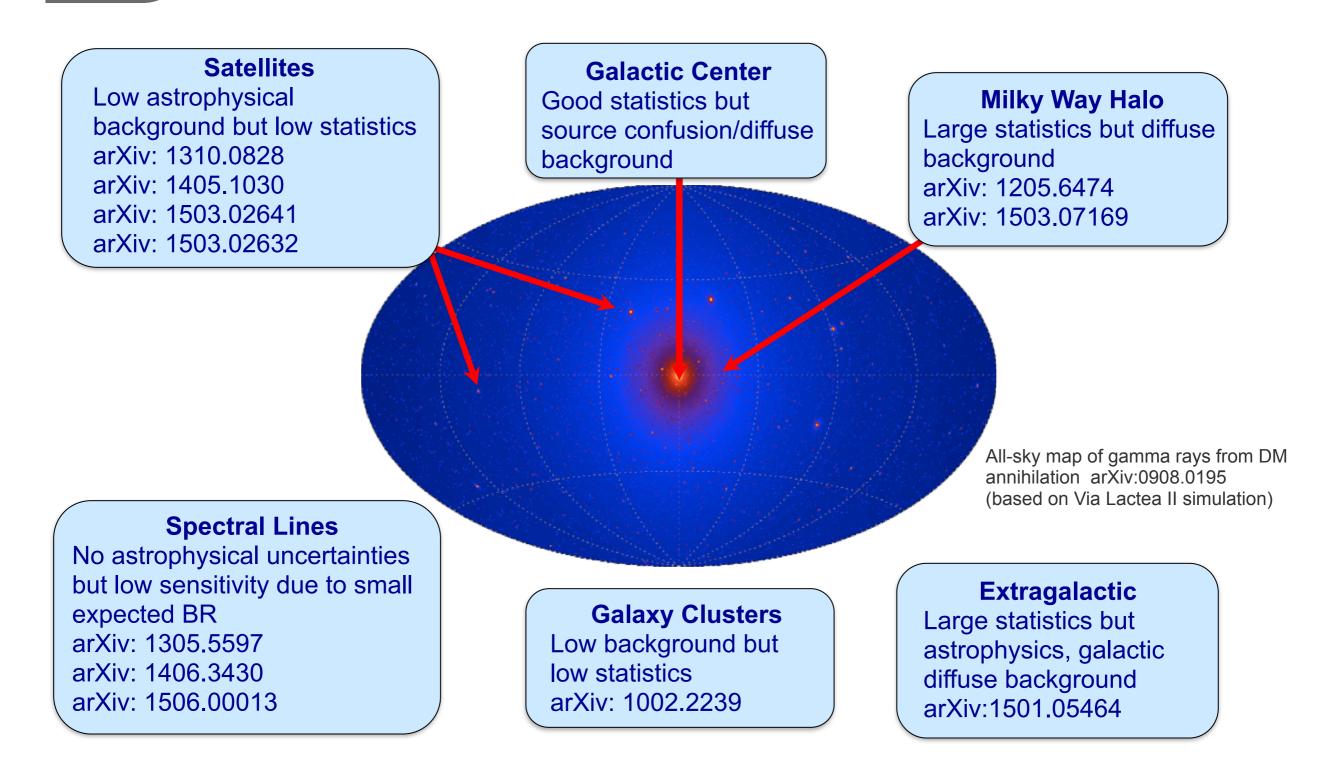

Large Area Telescope (LAT)

- Launched June 2008 with Fermi Observatory
- Modular 4x4 array
- 3ton 650watts

Anti-Coincidence Detector (ACD)

- Charged particle rejection
- Segmented (89 tiles + 8 ribbons)

Tracker (TKR)


- Convert gamma rays to e⁺/e⁻ pairs
- Use particle tracks to reconstruct gamma-ray direction
- Si-strip detectors with Tungsten conversion foils (1.5 X₀ on-axis)

Calorimeter (CAL)

- Measure gammaray energy
- 1536 CsI(TI) crystals (8.6 X₀ on-axis)
- Use shower shape for EM vs HAD separation

DM searches with Fermi-LAT

★ In all DM searches, we try to measure the same *universal* parameter, e.g. $<\sigma v >$ through gamma-ray flux:

$$\frac{d\Phi}{dE}(\Delta\Omega) = \frac{1}{4\pi} \frac{\langle \sigma v \rangle J(\Delta\Omega)}{2m_{\rm DM}^2} \frac{dN}{dE}$$

 Different observations of different targets differ in the astrophysical or J-factor

$$J(\Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{\text{l.o.s.}} dl \, \rho^2(l, \Omega)$$

* Aim: combine measurements of $\langle \sigma v \rangle$ from different targets and instruments

Some technical details

- ★ As a first step we have combined MAGIC with Fermi-LAT results, using published data:
 - MAGIC: Segue 1 stereo, 158 hours [Aleksić et al. JCAP 02 (2014) 008]
 - Fermi-LAT: 15 dwarfs, 6 years, pass 8 [Ackerman et al. arXiv:1503.02641]
- ★ Mass range from 10 GeV to 100 TeV
- * Annihilation channels: $b\overline{b}, \tau^+\tau, \mu^+\mu, W^+W$
- J-factors following Martinez [arXiv:1309.2641] (Fermi-LAT approach)
- ★ Annihilation spectra from 10⁷ simulations of a 2-body decay of generic resonance with m=2m_{DM} using PYTHIA 8.205
- Ultimate goal: merge ALL results from observations from dwarf satellite galaxies

Likelihood Analysis

For each channel and mass, compute the profile likelihood ratio:

$$\lambda_P(\langle \sigma v \rangle \,|\, \boldsymbol{\mathcal{D}}) \equiv \frac{\mathcal{L}(\langle \sigma v \rangle; \hat{\hat{\boldsymbol{\nu}}} \,|\, \boldsymbol{\mathcal{D}})}{\mathcal{L}(\langle \widehat{\sigma v} \rangle; \hat{\boldsymbol{\nu}} \,|\, \boldsymbol{\mathcal{D}})}$$

where the likelihood is:

$$\mathcal{L}(\langle \sigma v \rangle; \boldsymbol{\nu} \,|\, \boldsymbol{\mathcal{D}}) = \prod_{i=1}^{N_{\text{target}}} \mathcal{L}_i(\langle \sigma v \rangle; J_i, \boldsymbol{\mu}_i \,|\, \boldsymbol{\mathcal{D}}_i) \cdot \mathcal{J}(J_i \,|\, J_{\text{obs},i}, \sigma_i)$$

The J-factor is treated as nuisance parameter with

$$\mathcal{J}(J \,|\, J_{\rm obs}, \sigma) = \frac{1}{\ln(10) J_{\rm obs} \sqrt{2\pi\sigma}} \times e^{-\left(\log_{10}(J) - \log_{10}(J_{\rm obs})\right)^2 / 2\sigma^2}$$

(Gaussian in log₁₀J normalized wrt J)

And, for each target:

$$\mathcal{L}_{i}(\langle \sigma v \rangle; J_{i}, \boldsymbol{\mu}_{i} \,|\, \boldsymbol{\mathcal{D}}_{i}) = \prod_{j=1}^{N_{\text{instrument}}} \mathcal{L}_{ij}(\langle \sigma v \rangle; J_{i}, \boldsymbol{\mu}_{ij} \,|\, \boldsymbol{\mathcal{D}}_{ij})$$

Fermi-LAT likelihood

 For each dwarf, the contribution of Fermi-LAT measurements to the total likelihood is given by:

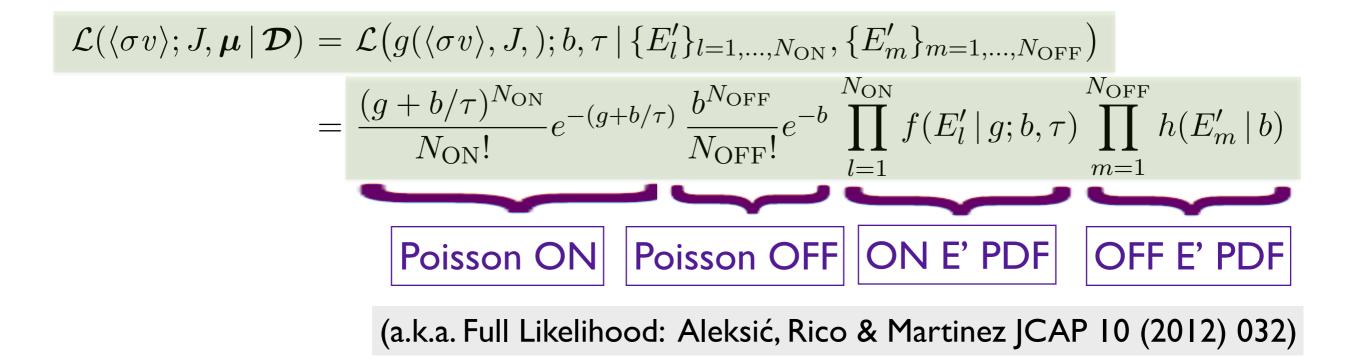
$$\mathcal{L}_{iF}(\langle \sigma v \rangle; J_i, \hat{\boldsymbol{\mu}}_{iF} \,|\, \boldsymbol{\mathcal{D}}_{iF}) = \prod_{k=1}^{N_{\mathrm{E-bins}}} \mathcal{L}_{iFk} \big(\overline{E\Phi}_k(\langle \sigma v \rangle, J_i) \big)$$

with

$$\overline{E}\overline{\Phi}_k(\langle \sigma v \rangle, J_i) = \int_{E_{\min,k}}^{E_{\max,k}} dE \, E \, \frac{d\Phi}{dE}(\langle \sigma v \rangle, J_i) \qquad (\text{Entropy})$$

(Energy flux within a given energy bin)

the values the likelihood vs. $\overline{E\Phi}_k$ are tabulated and released publicly by Fermi-LAT (e.g. <u>http://www-glast.stanford.edu/</u><u>pub_data/713/</u>)

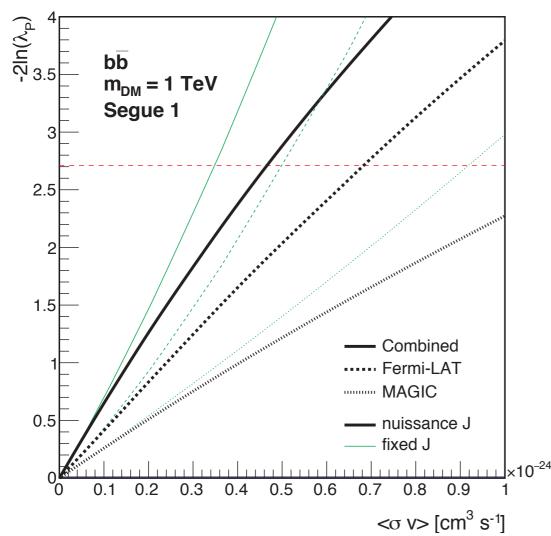


MAGIC likelihood

★ For MAGIC we have different Segue 1 samples:

$$\mathcal{L}_{iM}(\langle \sigma v \rangle; J_i, \boldsymbol{\mu}_{iM} \,|\, \boldsymbol{\mathcal{D}}_{iM}) = \prod_{k=1}^{N_{\text{samples}}} \mathcal{L}_{iMk}(\langle \sigma v \rangle; J_i, \boldsymbol{\mu}_{iMk} \,|\, \boldsymbol{\mathcal{D}}_{iMk})$$

each sample contribution to the likelihood is given by



Results

★ 1-sided 95% CL upper limits to $\langle \sigma v \rangle$ computed by solving:

 $-2\ln\lambda_P(\langle \sigma v \rangle \,|\, \boldsymbol{\mathcal{D}}) = 2.71,$

* Only positive $\langle \sigma v \rangle$ are considered (Fermi-LAT prescription)

 * 1- and 2-σ bands are computed from 300 fastsimulated MAGIC samples
+ 300 Fermi empty FoVs
J-factors also randomized Thermal relic cross section $H_0 95\%$ containment

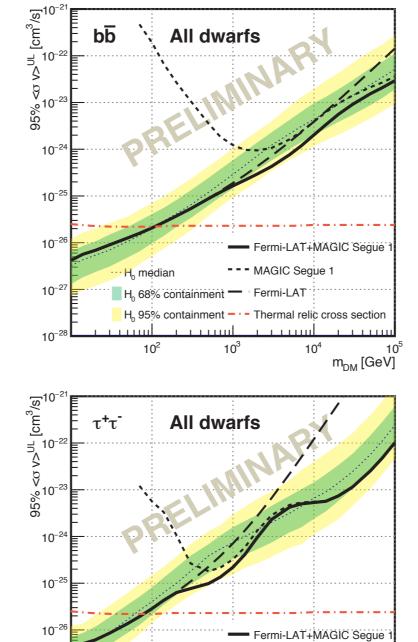
10⁴

Thermal relic cross section

10 marger in the matter grad limits

<u>Left</u>

102


10³

Fermi-LAT: 15 dwarfs MAGIC: Segue 1 <u>Right</u> Fermi-LAT: Segue 1 MAGIC: Segue 1

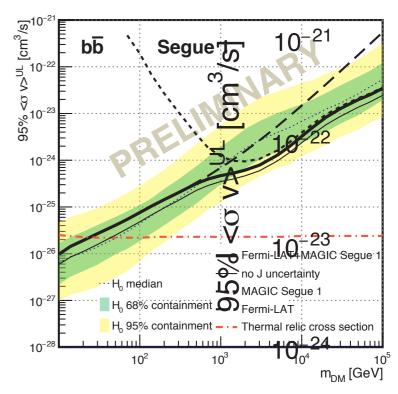
- Fermi-LAT+MAGIC Segue 1
- ----- no J uncertainty
- MAGIC Segue 1
- Fermi-LAT
- Thermal relic cross section
- --- H₀ median

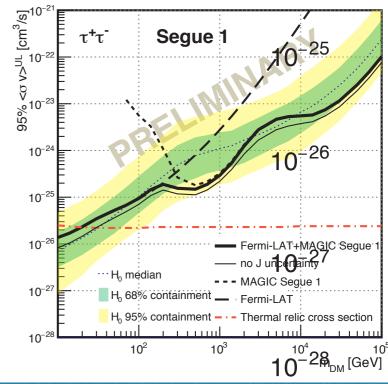
H₀ 68% containment

H₀ 95% containment

- - MAGIC Segue 1

Thermal relic cross section


10⁴


 10^{5}

m_{DM} [GeV]

Fermi-LA

 10^{3}

J. Rico - MAGIC/Fermi-LAT global DM limits

··· Ho median

10²

H. 68% containment

H_o 95% containment

 10^{-27}

10-28

Discussion/Conclusions

- ★ First time a coherent analysis for DM mass from 10 GeV to 100 TeV
- ★ No DM signal found
- ★ Best limits in the explored region from dwarfs
- ★ Low- (High-)mass range dominated by Fermi (MAGIC)
- In the range of similar sensitivity, improvement of limits by a factor up to ~2 wrt single instrument
- The method is completely generic and can easily incorporate measurements from other instruments sensitive to similar mass range (VERITAS, HESS, HAWC, maybe also neutrino telescopes like IceCube, Antares,...)
- We hereby invite colleagues from these collaborations to this cooperative effort

Astrophysics and particle physics

- J-factors for 15 dwarf galaxies following Martinez [arXiv: 1309.2641] (Fermi-LAT approach)
- Annihilation spectra from 10⁷ simulations of a 2-body decay of generic resonance with m=2m_{DM} using PYTHIA 8.205

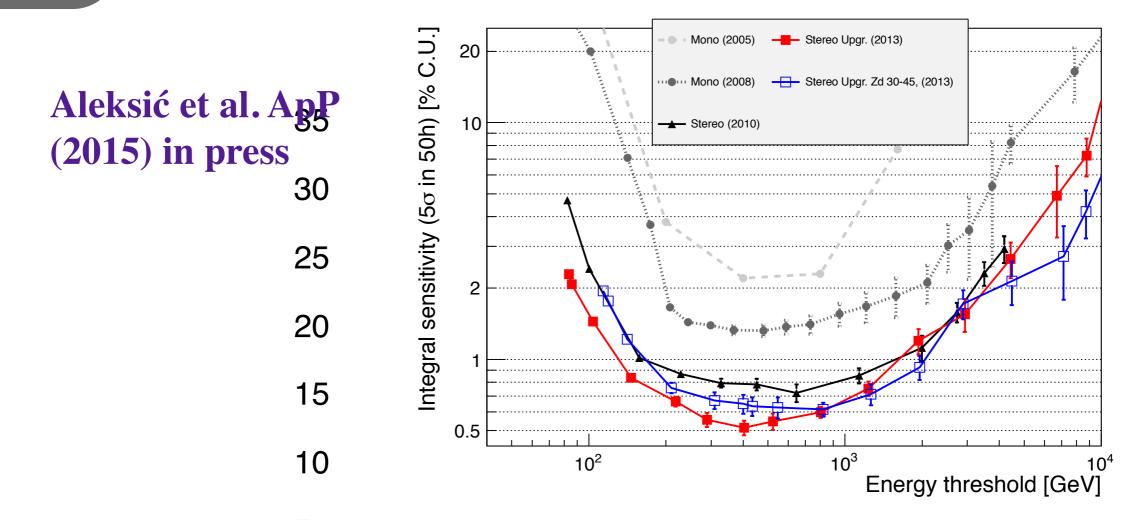
Name	1	b	Distance	$\log_{10}(J_{\rm obs})$
	[deg]	[deg]	[kpc]	$[\log_{10}(\text{GeV}^2\text{cm}^{-5})]$
Bootes I	358.1	69.6	66	18.8 ± 0.22
Canes Venatici II	113.6	82.7	160	17.9 ± 0.25
Carina	260.1	22.2	105	18.1 ± 0.23
Coma Berenices	241.9	83.6	44	19.0 ± 0.25
Draco	86.4	34.7	76	18.8 ± 0.16
Fornax	237.1	65.7	147	18.2 ± 0.21
Hercules	28.7	36.9	132	18.1 ± 0.25
Leo II	220.2	67.2	233	17.6 ± 0.18
Leo IV	265.4	56.5	154	17.9 ± 0.28
Sculptor	287.5	83.2	86	18.6 ± 0.18
Segue 1	220.5	50.4	23	19.5 ± 0.29
				$*19.3 \pm 0.29$
Sextans	243.5	42.3	86	18.4 ± 0.27
Ursa Major II	152.5	37.4	32	19.3 ± 0.28
Ursa Minor	105.0	44.8	76	18.8 ± 0.19
Willman 1	158.6	56.8	38	19.1 ± 0.31

MAGIC likelihood

★ For MAGIC we have different Segue 1 samples:

$$\mathcal{L}_{iM}(\langle \sigma v \rangle; J_i, \boldsymbol{\mu}_{iM} \,|\, \boldsymbol{\mathcal{D}}_{iM}) = \prod_{k=1}^{N_{\text{samples}}} \mathcal{L}_{iMk}(\langle \sigma v \rangle; J_i, \boldsymbol{\mu}_{iMk} \,|\, \boldsymbol{\mathcal{D}}_{iMk})$$

★ each sample contribution to the likelihood is given by


$$\mathcal{L}(\langle \sigma v \rangle; J, \boldsymbol{\mu} | \boldsymbol{\mathcal{D}}) = \mathcal{L}(g(\langle \sigma v \rangle, J,); b, \tau | \{E_l'\}_{l=1,...,N_{ON}}, \{E_m'\}_{m=1,...,N_{OFF}})$$
(3.13)
$$= \frac{(g+b/\tau)^{N_{ON}}}{N_{ON}!} e^{-(g+b/\tau)} \frac{b^{N_{OFF}}}{N_{OFF}!} e^{-b} \prod_{l=1}^{N_{ON}} f(E_l' | g; b, \tau) \prod_{m=1}^{N_{OFF}} h(E_m' | b)$$
(3.13)
with: (a.k.a. Full Likelihood)

$$g(\langle \sigma v \rangle, J) = \int_{E'_{\min}}^{E'_{\max}} dE' \int_0^\infty dE \frac{d\Phi}{dE} (\langle \sigma v \rangle, J) A(E) G(E; E') \quad \text{(number of gamma rays)}$$

$$f(E' \mid g; b, \tau) = \frac{\frac{1}{\tau}h(E') + \frac{g}{b}p(E')}{\frac{1}{\tau} + \frac{g}{b}} \quad \text{(On PDF)} \quad p(E') = \frac{\int_0^\infty dE \frac{d\Phi}{dE}(\langle \sigma v \rangle, J) A(E) G(E; E')}{g} \quad \text{(signal PDF)}$$

MAGIC Performance

★ Electronics and MAGIC-1 camera upgrade during 2011 - 2012

- ★ Best sensitivity: 0.6% Crab Nebula in 50 hrs at E~400 GeV
- 5.57 5.56 Improved An guilar and energy resolutions
 - * Now in a period of steady observations ruled by Key Observation Program

5.58