# Status of the SNO+ Experiment

Gersende Prior (LIP) on behalf of the SNO+ Collaboration

European Physical Society Conference on High Energy Physics 22-29 July 2015 - Vienna, Austria



LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTICULAS



# Outline

- I The SNO+ experiment:
- \* collaboration
- \* detector
- \* physics goals and phases
- \* scintillator & isotope selection

#### **II - SNO+ Status:**

- \* ropes tensioning, water level
- \* PMTs and DAQ systems
- \* water/scintillation systems & isotope purification
- \* calibration systems

- **III 0v**ββ physics sensitivity:
- \* neutrino masses current limits
- \* background mitigation
- \* phase I & higher loading sensitivity

**IV - Conclusion & outlook** 

# Collaboration



### Detector

SNO heavy water replaced by 780 tons of liquid scintillator

Liquid scintillator will be loaded with different amounts of double-beta isotope

New hold-down rope system

New DAQ system and readout cards

New calibration systems

norite + granite/gabbro

7kt ultra pure water shield

~9300 PMTs (54% coverage) 17 m diameter structure

> 12 m diameter 5 cm thickness acrylic vessel (AV)

Creighton mine, Sudbury, ON (Canada), 2 km (6000 m.w.e) depth



# Scintillator mixture & isotope selection

Liquid scintillator:

**solvent:** linear alkylbenzene (LAB)



fluor: 2,5 diphenyloxazole (PPO)

### LAB choice motivated by:

- \* its long time stability
- \* its compatibility with acrylic
- $\ast$  can be produced with high radio purity
- \* good optical properties (high attenuation length)
- \* its linear response in energy
- \* high flash point and low toxicity



<sup>130</sup>Te isotope choice motivated by:
\* its high natural abundance (34.08%)
\* its high half-life T<sup>2vββ</sup>1/2 = 7.0x10<sup>20</sup>yr
\* no inherent optical absorption lines
\* ~300 detected photo-electron hits/MeV (0.3% <sup>nat</sup>Te)

But low end-point (Q $\beta\beta$  = 2.53 MeV)

### Loading technique: \* dissolve telluric acid Te(OH)<sub>6</sub> in water \* combine with LAB with the help of a surfactant

0.3% of <sup>nat</sup>Te loading (by weight) = 800 kg of <sup>130</sup>Te

Higher loading (3%) under study

# **Rope tensioning & water level**

Hold-up (SNO) rope system + hold-down net





Rope tensioning (float-the-boat): tension the hold-down net to 284,000 lb (total load of liquid scintillator) by floating the AV filled to the equator in cavity water and hold the tension for 2 weeks.

#### **Partial float-the-boat:**

when cavity water level was at the AV bottom, a 80,000 lb load was applied to the rope net. Successful & confirmed the anchor adjustment.

### Liquid scintillator adding ~130 T of buoyancy



Current water level 20 ft (18 ft below equator) water fill to resume after cavity liner inspection

## **PMTs and DAQ systems**

#### SNO+ photomultipliers (PMTs):

- \* 9522 PMTs [20 cm (8´´) Hamamatsu R1408]
- \* 850 PMTs with base short circuits (90%) or tube failure (10%)
- \* 391 PMTs repaired and replaced (1/2)

#### **New requirements:**

\* transition from reading one crate at a time at 2-250 kB/s bandwidth (SNO) to sending data in parallel at 2.5 MB/s. \* event size increasing from 40 PMTs (SNO solar v) to 1500 PMTs (SNO+  $2v\beta\beta$ ).

### **Upgrades:**

\* new DAQ software (ORCA @UNC)
\* new databases (couchDB, Redis)
\* new visualization tools (D3/Cubism)
\* new monitoring & slow-control systems

First Mock Data challenge: successful test of near-line framework

Airfill and water commissioning runs used to test the full system.







# Water/Scintillation systems & isotope purification

### Water system:

- $\ast$  reconditioned to supply water inside the AV
- \* initial leach/wash of the AV
- \* achievable purity comparable to that of SNO
- \* also for scintillator mixing and purification
- \* complete and in operation

Scintillator system: \* provide multistage LAB/PPO distillation \* high temperature vacuum distillation \* water extraction (remove <sup>40</sup>K, Ra, <sup>210</sup>Pb) \* N<sub>2</sub>/steam stripping (remove Rn, O<sub>2</sub>, Kr, Ar) \* major piping/vessel installation done \* working on leak checking \* then cleaning and passivation

### **Isotope purification:**

- \* double-pass (with ethanol rinsing) purification on surface (purification factor 10<sup>4</sup>)
- \* purification underground (no ethanol) additional factor 100
- \* investigating the possibility to move the surface purification system underground





# **Optical calibration systems**

#### **Purposes:**

- \* measure the PMTs response
- \* measure in-situ the optical properties of the media

#### Systems:

- \* fixed fiber-based system using LEDs/laser light injection placed on the PMTs array
- \* deployed light (laser with dyes) source (laserball)
- \* deployed cherenkov light source

### Calibration:

- \* validation of light transport models in different media
- \* PMT angular response, timing and gain calibration
- \* attenuation length, scattering properties of the media
- \* monitoring transparency of the media
- \* PMTs efficiency

#### **Deployment system:**

- \* deploy several types of sources from the top of the AV
- \* off-axis (in two planes) source location achievable
- \* radon-tight and fully sealed system



#### Fibers system:

- \* LEDs or laser pulses
- \* different wavelengths
- \* different fibres angles
- \* 106 different location points

New laserball under construction 69 fibers installed and tested Cherenkov source prototype ready

### **Radioactive sources**

#### **Purposes:**

\* measure efficiency and systematic uncertainties of event reconstruction (energy, position, particle id)

#### Systems:

\* several ( $\beta$ , $\gamma$ ) radioactive sources under study \* will be deployed in the detector from top of AV

| Source              | Radiation         | Energy [MeV]        |
|---------------------|-------------------|---------------------|
| AmBe                | n, $\gamma$       | $2.2, 4.4 (\gamma)$ |
| $^{60}$ Co          | $\gamma$          | 2.5 (sum)           |
| $^{57}\mathrm{Co}$  | $\gamma$          | 0.122               |
| $^{24}$ Na          | $\gamma$          | $4.1 \; (sum)$      |
| $^{48}\mathrm{Sc}$  | $\gamma$          | 3.3 (sum)           |
| $^{16}N$            | $\gamma$          | 6.1                 |
| $^{220}Rn/^{222}Rn$ | $lpha,eta,\gamma$ | various             |



### **Universal deployment/interface:**

Under

\* mechanism able to deploy sources, voltages, gas, ropes...

\* sealed interface with glove box, view ports, gate valves.

## Neutrino mass current limit



S. M. Bilenky and C. Giunti, Modern Physics Letters A 71, Number 13 (2012) 1230015

# **Background mitigation**

2vββ (irreducible):

\* use asymetric ROI around the  $0\nu\beta\beta$  signal \* energy resolution limited

#### <sup>8</sup>B solar neutrinos (irreducible):

\* "flat" continuous background from elasticallyscattered electrons

 $\ensuremath{\ast}$  normalized using published flux data and solar mixing parameters



# Phase I & higher loading sensitivity



#### Higher loading sensitivity:

\* R&D efforts show that at 3% <sup>nat</sup>Te loading a light yield of 150 Nhit/MeV can be achieved with perylene as second wavelength shifter

\* loss of light yield can be compensated by HQE PMTs/PMTs concentrator improvements

\* could set a lower limit on  $T^{0\nu\beta\beta}_{1/2} = 7x10^{26}$  yr (mass range of 19 - 46 meV)

### **Conclusion & outlook**

SNO+ main physics goal is the search for 0vββ for a mass range in the top of the IH mass region Multi-purpose detector able to study also:

- **\*** solar neutrinos
- \* reactor and geo-neutrinos (see S. Andringa poster)
- \* supernova neutrinos
- **\*** nucleon decay
- **\*** water plant finished and under operation
- **\*** scintillator plant undergoing final cleaning and passivation work
- **\*** source insertion and deployment mechanisms under construction
- **\* DAQ / dataflow / monitoring / nearline tools in benchmarking**
- \* detector ready to take data

2015-2016 water commissioning phase 2016 scintillator phase 2017 Te loading phase I

# Acknowledgements









This work was partially funded by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the following project grants:

- \* PTDC/FIS/115281/2009
- **\* IF/00863/2013**
- **\* IF/00863/2013/CP1172/CT0006**
- **\* EXPL/FIS-NUC/1557/2013**

# BACKUP

### What do we do if we see a bump?



## Neutrinoless double beta decay



#### J. Barea et al Phys. Rev. C 87 014315 (2013)

$$T_{1/2}^{0\nu\beta\beta} = \frac{N \cdot \ln(2)}{n_{\sigma}} \cdot \frac{f(\delta\epsilon) \cdot t}{\sqrt{(b \cdot M + c) \cdot \delta E \cdot t}}$$

scaling with isotope quantity (e.g. internal U/Th)

independant of isotope quantity (e.g. solar <sup>8</sup>B) N total number of isotope nuclei n<sub>σ</sub> number of standard deviation f(δε) energy window acceptance fraction M isotope mass in kg δE energy window in keV b background counts in (keV.kg.yr)<sup>-1</sup> c background count in (keV.yr)<sup>-1</sup>

### Backgrounds from the natural 238U and 232Th chains

 $^{212}Pb$ 10.6h $\beta^{-} 0.57 \gamma 239$  $^{212}\mathrm{Bi}$ 60.6m $64\% \beta^{-} 2.25 \gamma 727$  $36\% \ \alpha \ 6.21$  $^{208}$ Tl <sup>212</sup>Po 3.05m $0.30 \mu s$  $\beta^{-}$  4.99  $\gamma$  583,860  $\alpha 8.95$  $\gamma 2614 (100\%)$  $^{208}Pb$  $^{214}\text{Bi}$  $>99\% \beta^- 3.27$ 19.7m $0.021\% \ \alpha \ 5.62$ 609, ~ 1% BR to  $\gamma > 2200$  $^{210}$ Tl <sup>214</sup>Po  $1.30m \beta^{-} 5.49$  $164 \mu s$  $\alpha$  7.83  $\gamma 800, \sim 1\%$  BR to  $\gamma > 2200$  $^{210}\mathrm{Pb}$ 22.26y $\beta^{-} 0.06$  $^{210}Bi$ 5.01d $\beta^{-}$  1.16 <sup>210</sup>Po 138d $\alpha 5.30$  $^{206}Pb$ 

\* β - α coincidence tagging for events
 in different trigger windows
 \* PMTs hit time analysis for events in
 same trigger window

\* α - β coincidence tagging for events
 in different trigger windows
 \* PMTs hit time analysis for events in
 same trigger window

2.6 MeV γs from external <sup>208</sup>TI
\* can be suppressed with FV cut
\* from AV can be removed via PMT hit time analysis



### **Other physics in SNO+**

#### **Solar neutrinos:**

\* with scintillator purity at Borexino level, sensitivity to CNO, *pep* and low-energy <sup>8</sup>B with unloaded scintillator
 \* if can source scintillator with reduced (one order magnitude) <sup>14</sup>C level can also measure *pp* \* <sup>8</sup>B with energy above the <sup>130</sup>Te end-point can be measured in the scintillator loaded phases



Anti-neutrinos from reactors and the Earth (see poster by S. Andringa)

#### Supernova neutrinos:

\* measurements of Core Collapse supernovae neutrinos can shed light on explosion mechanism

\* member of the Supernova Early Watching System (SNEWS)

# Exotics physics: \* search for invisible nucleon decay mode signature in the water phase \* axion-like particle search in all SNO+ phases