Radiative origin of Majorana neutrino masses

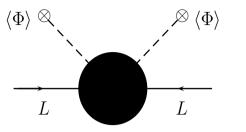
Diego Aristizabal IFPA Group, Université de Liège, Belgium

Based on:

arXiv:1411.7038: DAS, A. Degee (IFPA), L. Dorame (VLC), M. Hirsch (VLC)

Different ways to neutrino

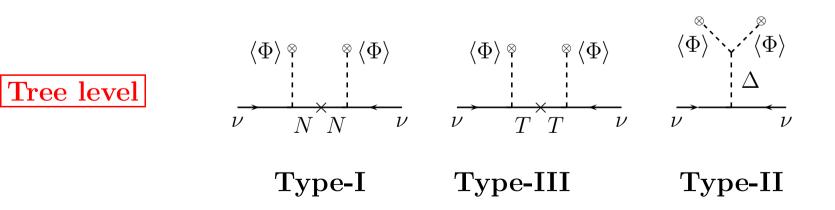
masses


- Majorana neutrino masses
- Beyond tree-level
- Constructing potentially testable models
- What has been done?

The two-loop case

Summary

Different ways to neutrino masses


Majorana neutrino masses

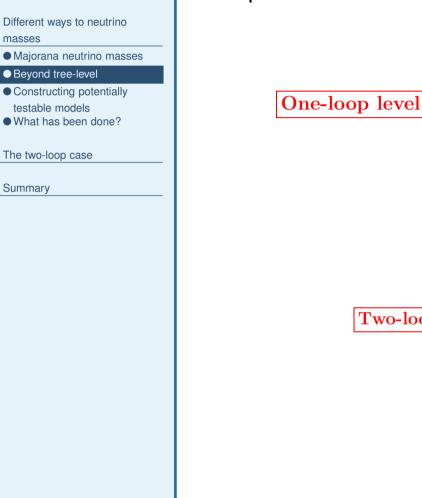
$$\left(M_{\nu}^{\text{eff}}\right)_{ij} \sim C_{ij} \frac{v^2}{\Lambda}$$

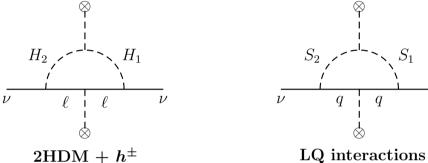
"Natural" couplings $\mathcal{O}(C_{ij}) \sim 1$ point towards a GUT lepton number-breaking scale $\Lambda \sim 10^{15}$ GeV

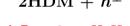
The high-energy picture

Different ways to neutrino masses

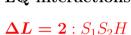
Majorana neutrino masses

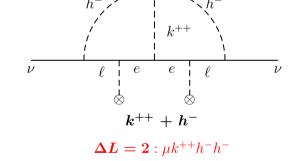

- Beyond tree-level
- Constructing potentially testable models
- What has been done?


The two-loop case


Summary

Beyond tree-level


Besides the "natural" tree level realizations, others can be conceived (some examples with Yukawa lepton number-conserving interactions):


 $\Delta L = 2 : \mu H_1 H_2 h$

 S_1

ν

These realizations allow $\Lambda \sim \Lambda_{FW}$

lead to testable predictions!

Constructing potentially testable models

The neutrino mass matrix generated from an n - loop and dimension d diagram:

Different ways to neutrino

- masses
- Majorana neutrino masses
- Beyond tree-level
- Constructing potentially
- testable models
- What has been done?

The two-loop case

Summary

$$m_{\nu} \sim \varepsilon \times \frac{Y^2 \nu^2}{\Lambda} \times \left(\frac{Y^2}{16\pi^2}\right)^n \times \left(\frac{\nu^2}{\Lambda}\right)^{d-5}$$

Lower scale models

- The neutrino mass matrix arises from higher-order loop diagrams
- The neutrino mass matrix arises from higher-order effective operators
- The neutrino mass matrix involves small parameters
- Combinations...

Allowing for *Y* couplings in the range $[10^{-3}, 1]$, all possibilities enable $\Lambda \sim \Lambda_{EW}$

Potential testabilty at LHC!

(Bonnet, Hirsch et. al. 2012)

Model-dependent results

(An almost "infinite" list)

	Loop-induced	Higher operators	Slightly broken L
	Ext. scalar sectors: Babu-Zee (1988), Zee (19	30) <i>d</i> = 7 (Babu et. al. 2009)	Inverse seesaw (Valle & Mohapatra, 1986)
	Ext. scalar + fermion sector: Scotogenic (200) $d \ge 7+1$ -loop (Kanemura & Ota, 2010)	Hambye et. al, 2009
_	Hybrid tree+loop: A. Pilaftsis 1992		Pilaftsis & Dev 2012,2013
		Complete picture only possible model-independent approaches	

Loop-induced

Eff. Op. approachDiagrammatic approachBabu & Leung (2001)1-loop: Hirsch et. al. 2012de Gouvea & Jenkins (2007)Mixed: Pascoli et. al. 2012Volkas et. al. 20122-loop: DAS et. al. 2014

Higher order

Winter et. al. 2005 (Non-SUSY) Winter et. al. 2011 (SUSY)

Different ways to neutrino

 Beyond tree-level
Constructing potentially testable models
What has been done?

The two-loop case

Summary

Majorana neutrino masses

masses

Different ways to neutrino masses

The two-loop case

- The recipe
- Renormalizable topologies
- Field insertions
- Second step: rèsumè
- Type of diagrams
- QNs: an exercise

Summary

The two-loop case

The recipe

A systematic classification (at a given loop order) of the possible realizations is feasible through the following "recipe"

Bonnet, Hirsch, Ota and Winter [arXiv:arXiv:1204.5862]

Algorithm

- 1. Identify possible topologies.
- 2. For all possible external legs configurations $(2\Phi + 2L)$ insert internal lines (fermion or boson) subject to renormalizability conditions.
- **3.** Fix the $SU(2)_L \times U(1)_Y$ quantum numbers (color can be trivially done).
- 4. Calculate loop integrals

Items 1 & 2 can be done

by using FeynArts cleverly

Item 3 can be addressed by using SU(2)

product representation decomposition

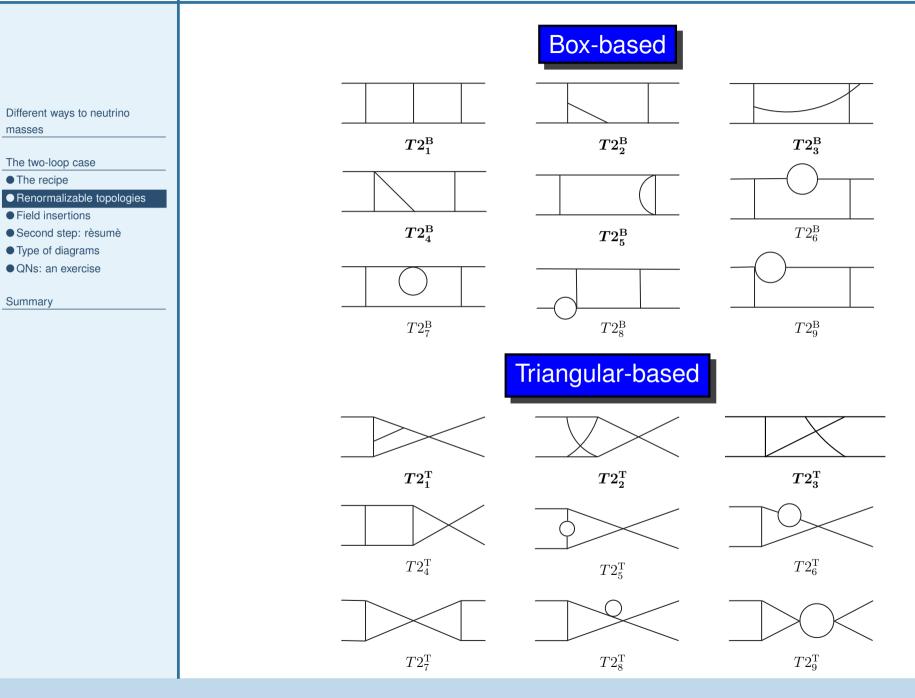
Item 4 can be addressed by using partial fraction

decomposition and "master" integrals

Different ways to neutrino

Renormalizable topologies

The two-loop case • The recipe


Field insertions

Summary

Second step: rèsumè Type of diagrams • QNs: an exercise

masses

Renormalizable topologies

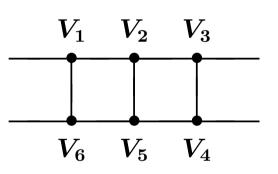
Field insertions

Focusing only on fermions and scalar bosons [Not considering gauge bosons]:

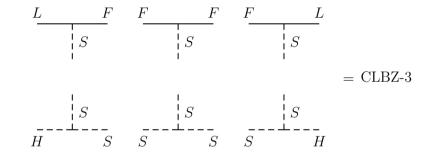
Different ways to neutrino masses

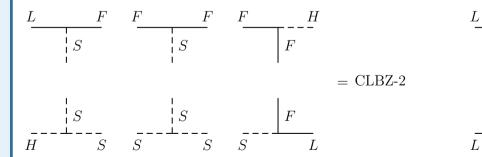
The two-loop case

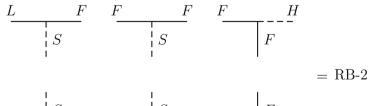
• The recipe


• Renormalizable topologies

Field insertions


- Second step: rèsumè
- Type of diagrams
- QNs: an exercise


Summary


Ask FeynArts to insert fermions and bosons

Double check by hand using tree-like structures and sequential vertex insertions

At this point the number of possible diagrams can be already determined. However with certain caution!

Different ways to neutrino masses

The two-loop case

• The recipe

Renormalizable topologies

Field insertions

Second step: rèsumè

Type of diagrams

QNs: an exercise

Summary

Box-based topologies

TOPOLOGY	$T2^B_1$	$T2_2^B$	$T2_3^B$	$T2_4^B$	$T2_5^B$	$T2_6^B$	$T2_7^B$	$T2_8^B$	$T2_9^B$	TOTAL
# OF DIAG	10	14	9	3	1	12	4	2	3	58

Triangle-based topologies

TOPOLOGY	$T2_1^T$	$T2_2^T$	$T2_3^T$	$T2_4^T$	$T2_5^T$	$T2_6^T$	$T2_7^T$	$T2_8^T$	$T2_9^T$	TOTAL
# OF DIAG	2	1	2	2	1	2	1	1	1	13

Order-2-uniqueness applied to resulting diagrams

Type of diagrams

Different ways to neutrino masses

The two-loop case

• The recipe

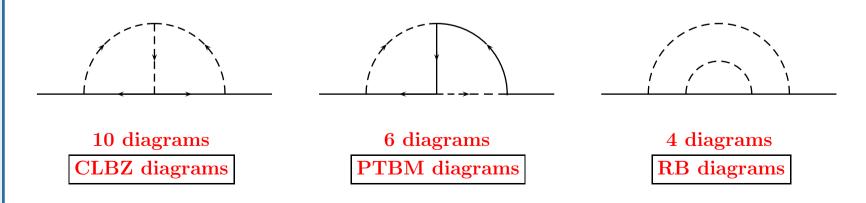
Renormalizable topologies

Field insertions

Second step: rèsumè

• Type of diagrams

QNs: an exercise


Summary

Genuine Diagrams for which absence of leading order diagrams is guaranteed.

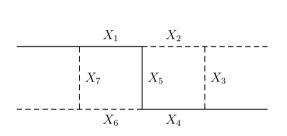
Non-genuine finite Diagrams are 1-loop, but one of the couplings is generated radiatively. They are "effectively" 2-loop.

Non-genuine divergent Are just corrections to leading-order neutrino masses, generated at the 1-loop level.

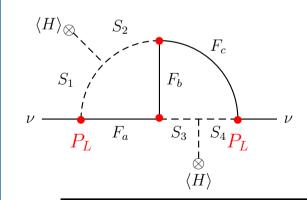
Despite the large number of diagrams, genuine diagrams reduce to "just" variations of

QNs: an exercise

Tables with QNs for all genuine diagrams as well as all results for all possible two-loop integrals in DAS, Degee, Dorame and Hirsch, 2014


Different ways to neutrino masses

The two-loop case


- The recipe
- Renormalizable topologies
- Field insertions
- Second step: rèsumè
- Type of diagrams
- QNs: an exercise

Summary

	X ₂ X	1			1				
			X_5	X_7	X_6	X_3	X_4		
	1		1	2	1	2	1		
	1		T	2	3	2			
	2		2	2	1	1	2		
					3	3			
	3		3	2	1	2	1		
	-				3		3		
Y_1	Y_2	Y_{z}	3	Y_4		Y_5	Y	6	Y_7
$-1 + \alpha$	$-1 + \beta$	β	-	1+/	β α	$-\beta$	-1	$+\alpha$	α

	PTBM-3 model										
FIELDS	F_a	F_b	F_c	S_1	S_2	S_3	S_4				
$SU(2)_L$	1	2	2	2	1	2	1				
$U(1)_Y$	1	5	-4	2	1	-4	-3				

The chiral structure of internal vertices

fixes the type of integrals

List of integrals tabulated in

DAS et. al. (2014)

EPS-HEP-2015, July 23rd, 2015 - p. 13

Different ways to neutrino

masses

The two-loop case

Summary

Rèsumè

Summary

Rèsumè

Different ways to neutrino masses

The two-loop case

Summary • Rèsumè

- Neutrino masses, in addition to the BAU and DM, provide the most strong evidence for physics beyond the SM.
- If neutrinos indeed get their masses via certain "form" of a "standard" high-scale mechanism, no experimental prove is possible.
- Other forms, "low-energy" forms, do exist and can lead—in principle—to testable predictions.
- Understanding whether this is the case calls for a full program which requires a systematic understanding of all possibilities: For radiative generated scenarios task completed at the one- and two-loop order

Scenario I:

A positive collider signal... First step towards the mechanism

Scenario II:

No signal at all... Increase the likelihood for $\Delta L \neq 0$ at $\Lambda \sim \Lambda_{GUT}$