

Electroweak constraints in the Standard Model and beyond

Thomas Peiffer

on behalf of the Gfitter collaboration

M. Baak, J. Cuth, J. Haller, A. Hoecker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

EPS 2015, Vienna

24.7.2015

Overview

Content:

The electroweak fit of the SM

New physics constraints

The 2-Higgs-Doublet Model (2HDM)

Future Colliders

The Electroweak Fit

- Gauge & scalar sector is determined by 4 parameters (choose α , G_F , M_Z , M_H)
- Other parameters and observables related by theory

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \qquad M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

- → over-constrained theory allows consistency check and search for BSM
- Other SM parameters (quark masses, $M_{_{\! H}}$, $\alpha_{_S}$) enter by radiative corrections

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8} \pi \alpha (1 - \Delta r)}{G_F M_Z^2}} \right) \qquad \qquad \underbrace{\gamma, Z/W}_{\gamma, Z/W} \underbrace{\gamma, Z/W}_{\gamma, Z/W} \underbrace{\gamma, Z/W}_{Z/W} \underbrace{\gamma, Z/W}_{Z$$

α and G_f known with high precision → not varied in the fit

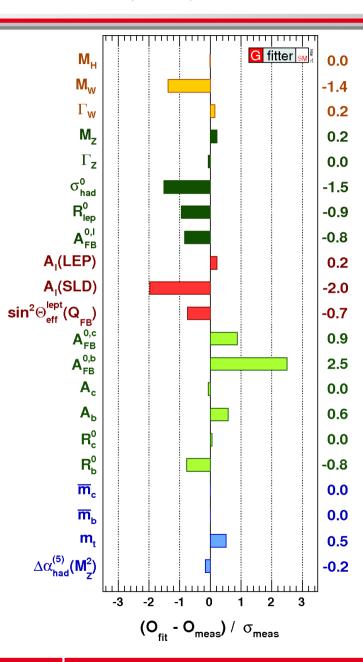
Theoretical Input

- Consistent set of full EW 2-loop calculations is available:
 - $\sin^2 \Theta^{f}_{eff}$: effective weak mixing angle (from ratio g_V/g_A) (M. Awramik et al., PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009))
 - M_W: mass of the W boson, includes QCD corrections at 4-loop level (M. Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002))
 - Γ_f: partial widths of the Z boson (A. Freitas, JHEP 04, 070 (2014))
 - Radiator functions to Γ_f: QED and QCD corrections up to N³LO
 (Baikov et al., PRL 108, 222003 (2012))
 - Γ_W: width of the W boson, only 1-loop EW corrections included (Cho et al., JHEP 1111, 068 (2011)
- Estimate uncertainties due to unknown higher orders (using a geometric series):

$\delta_{ m theo} M_W$	$4 \; \mathrm{MeV}$	$\delta_{\mathrm{theo}}\Gamma_{u,c}$	$0.12~\mathrm{MeV}$
$\delta_{ m theo} \sin^2\! heta_{ m eff}^f$	$4.7\cdot 10^{-5}$	$\delta_{ m theo}\Gamma_b$	$0.21~{ m MeV}$
$\delta_{ m theo}\Gamma_{e,\mu, au}$	$0.012\;\mathrm{MeV}$	$\delta_{ m theo}\sigma_{ m had}^0$	6 pb
$\delta_{ m theo}\Gamma_{ u}$	$0.014\;\mathrm{MeV}$	$\delta_{ m theo} \mathcal{R}_{V,A}$	$\sim \mathcal{O}(\alpha_s^4)$
$\delta_{\mathrm{theo}}\Gamma_{d,s}$	$0.09~\mathrm{MeV}$	$\delta_{ m theo} m_t$	$0.5~\mathrm{GeV}$

Uncertainty on m_t: Relation between m_{pole} and measured mass

Experimental Input


- All SM parameters measured in experiments
- Input from e⁺e⁻ colliders (LEP+SLC):
 - M_z, M_w, Γ_w, Γ_z
 - forward-backward asymmetries
 - partial-Z-width ratios R
- Input from hadron colliders (LHC+Tevatron):
 - M_W, Γ_W
 - **M**_H
 - m_t
- $\alpha_s(M_Z^2)$ enters the fit as free parameter
- α evolving parameterized with $\Delta \alpha^{(5)}_{had}$

M_H [GeV]	125.14 ± 0.24
$\overline{M_W \text{ [GeV]}}$	80.385 ± 0.015
$\Gamma_W \; [{ m GeV}]$	2.085 ± 0.042
M_Z [GeV]	91.1875 ± 0.0021
Γ_Z [GeV]	2.4952 ± 0.0023
$\sigma_{ m had}^0 \; [m nb]$	41.540 ± 0.037
R_ℓ^0	20.767 ± 0.025
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010
A_ℓ	0.1499 ± 0.0018
$\sin^2\! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012
A_c	0.670 ± 0.027
A_b	0.923 ± 0.020
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016
R_c^0	0.1721 ± 0.0030
R_b^0	0.21629 ± 0.00066
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$
$m_t \; [{ m GeV}]$	173.34 ± 0.76
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	2757 ± 10

Results

- Global $\chi^2 = 17.8$ (for ndof = 14), p-value=0.21
- Predictions consistent with measurements
- Largest deviation for $A_{FB}^{0,b} \sim 2.5\sigma$



Indirect determination G fitter

Perform fit without including direct measurement of observable in the fit

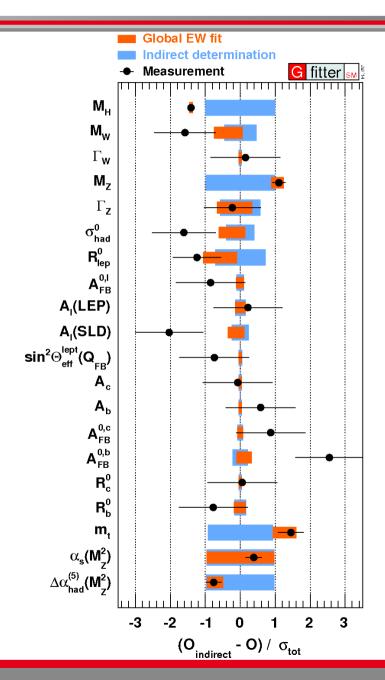
Indirect determination of M_w more precise than direct measurement

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$

$$\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$

$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV}.$$

compared to world average: 80.385 ± 0.015 GeV

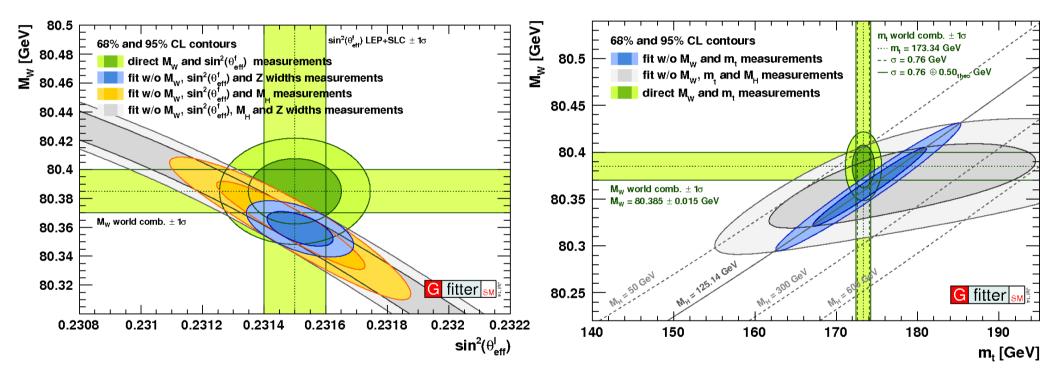

Other indirect determinations:

$$M_H = 93^{+25}_{-21} \,\text{GeV}$$

direct value: 125.14 ± 0.24 GeV

$$m_t = 177.0^{+2.3}_{-2.4} \,\text{GeV}$$

direct value: 173.34 ± 0.76 GeV



EPS 2015

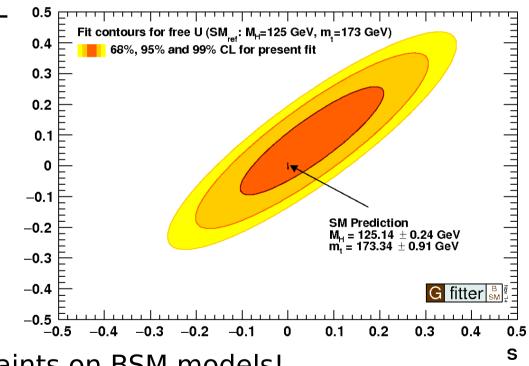
2D Scans

- Testing simultaneously two sensitive observables to New Physics effects
- Determine χ^2 for each point in 2D space

- Increased precision due to knowledge of M_H
- Good consistency of SM predictions and measurements

Oblique Parameters

New Physics in electroweak sector parameterized with 3 parameters:


- S: changes to neutral currents
- T: changes to difference between charged and neutral currents
- U: changes to W width and mass

In SM:
$$S=T=U=0$$

Fit result (for fixed $M_H=125$ GeV and $m_t=173$ GeV):

$$S = 0.05 \pm 0.11$$

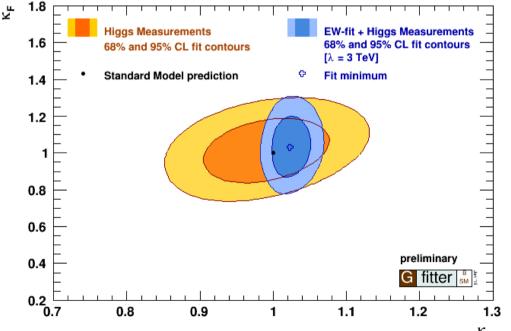
 $T = 0.09 \pm 0.13$
 $U = 0.01 \pm 0.11$

(with large correlations)

No hint for New Physics but constraints on BSM models!

Higgs Couplings

- New in Gfitter: constraints from Higgs physics with interface to HiggsBounds & HiggsSignals (P. Bechtle et al., Eur.Phys.J C74 (2014) 2693 & 2711)
- Include latest Higgs branching ratio measurements from LHC
- Simple New Physics example:


 - κ_ν contributes to S, T:

$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2}$$

$$T = -\frac{3}{16\pi \cos^2 \theta_{\text{eff}}^{\ell}} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2}$$

(S and T depend on scale Λ)

(J. Espinosa et al., JHEP 1212, 045 (2012))

Combination of Higgs and EW data improves sensitivity to New Physics

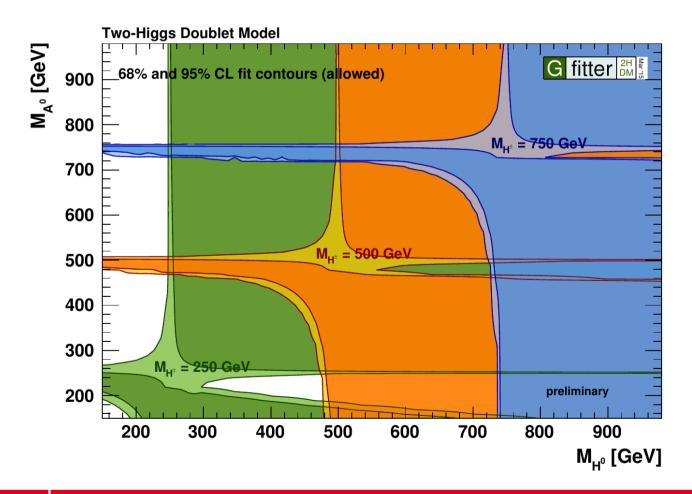
2HDM

The 2-Higgs-Doublet Model

- Simplest extension of the SM Higgs sector
- One additional Higgs doublet → 5 Higgs bosons:

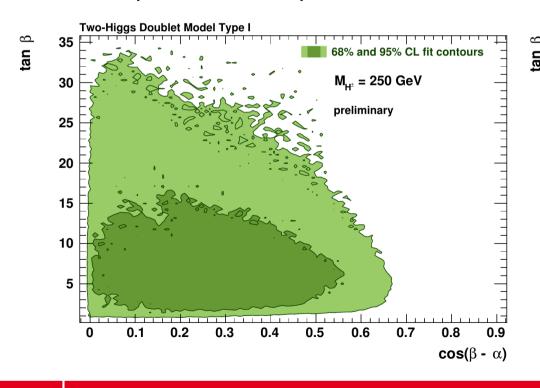
$$h_0$$
, H_0 , A_0 , H^+ , H^-

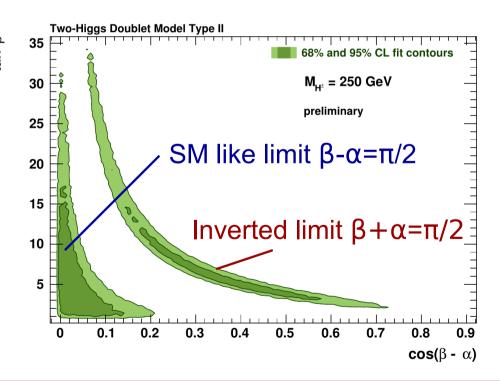
- Additional free parameters:
 - tan $\beta = v_2/v_1$
 - α: mixing angle of the neutral Higgs fields
 - M_{12}^2 : mass parameter of the mixed term $\Phi_1^{\dagger}\Phi_2$, soft breaking scale


How is the 2HDM constrained by the EW fit and the measured Higgs boson?

2HDM: EW Constraints G fitter

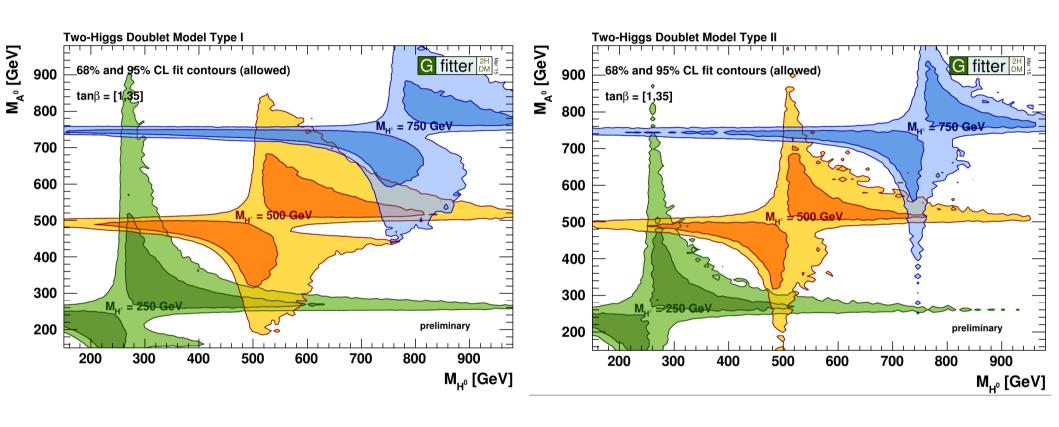
- Use STU formalism to constrain 2HDM
- Assume: discovered 125 GeV Higgs boson is light ho
- Keep tan β and α free (not constraint by EW data)


Only weak constraints on masses from electroweak data



2HDM: Higgs BRs

- Measured Higgs branching ratios can constrain 2HDM
- Predictions for Higgs BRs from 2HDMC (D. Eriksson et al., CPC 181, 189 (2010))
- Type I, Type II, flipped (Type III), lepton specific (Type IV) with different Yukawa couplings to light, heavy and charged Higgses
- Importance sampling algorithm MultiNest (F. Feroz et al., arXiv:1306.2144) used to scan parameter space



2HDM: Mass limits

Mass scans with constraints from Higgs BRs and EW data

Not included so far: Constraints from flavor physics and direct searches

Future Colliders

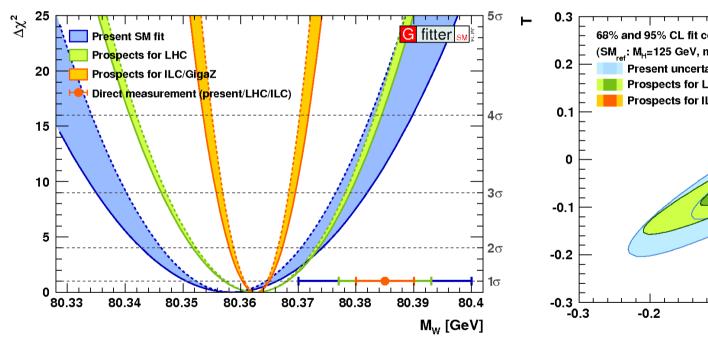
LHC and future electron colliders could improve EW measurements

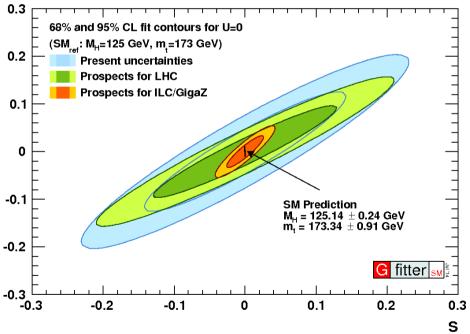
Future LHC:

- Run 2 and 3 data
- 300 fb⁻¹
- More precise t, H and W masses

• ILC:

- WW, tt threshold scans
 - → t and W masses with high precision
- GigaZ:
 - → Z pole measurements
- Reduced theory uncertainties from 3-loop calculations
 - $\rightarrow \delta_{theo}M_W$ and $\delta_{theo}sin^2\Theta^f_{eff}$ reduced by factor 4-5


Parameter	Present	LHC	ILC/GigaZ
M_H [GeV]	0.4	< 0.1	< 0.1
$M_W \mathrm{[MeV]}$	15	8	5
$M_Z [{ m MeV}]$	2.1	2.1	2.1
$m_t [{ m GeV}]$	0.8	0.6	0.1
$\sin^2\!\theta_{ m eff}^{\ell}$ [10 ⁻⁵]	16	16	1.3
$\Deltalpha_{ m had}^5(M_Z^2)$ [10 ⁻⁵]	10	4.7	4.7
R_l^0 [10 ⁻³]	25	25	4



Future Colliders

- Indirect measurements with ILC data:
 - Current deviations might become significant hint for New Physics!
- STU scans can constrain NP with higher precision (more than factor 3)

Conclusion

- Electroweak fit probes SM at high precision
- Combination of EW and Higgs data can be used to constrain New Physics
- So far: consistency of all SM measurements

Outlook:

- LHC and future e⁺e⁻colliders could improve measurements
- EW fit important to test SM with ultra-high precision in the future

BACKUP

EPS 2015 Thomas Peiffer 19

Fit Results

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
$\overline{M_H [{ m GeV}]^{(\circ)}}$	125.14 ± 0.24	yes	125.14 ± 0.24	93 ⁺²⁵ ₋₂₁	93+24
M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
$\overline{M_Z}$ [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016
$\sigma_{ t had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015
R_ℓ^0	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026
$A_{ m FB}^{\widetilde{0},\ell}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001
$A_\ell\stackrel{(\star)}{}$	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004
$\sin^2\!\! heta_{ ext{eff}}^\ell(Q_{ ext{FB}})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005
A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016
A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004
$\overline{\overline{m}_c}$ [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_
\overline{m}_b [GeV]	$4.20_{-0.07}^{+0.17}$	yes	$4.20_{-0.07}^{+0.17}$	_	_
$m_t [{ m GeV}]$	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(\nabla)}$	$177.0^{+2.3}_{-2.4}(\nabla)$	177.0 ± 2.3
$\Delta lpha_{ m had}^{(5)}(M_Z^2)^{(\dagger riangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42
$lpha_s(M_Z^2)$	-	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028

⁽o) Average of the ATLAS and CMS measurements assuming no correlation of the systematic uncertainties.

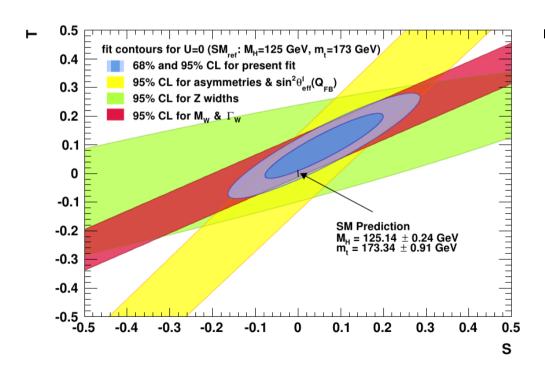
 $^{^{(\}star)}$ Average of the LEP and SLD A_ℓ measurements, used as two measurements in the fit.

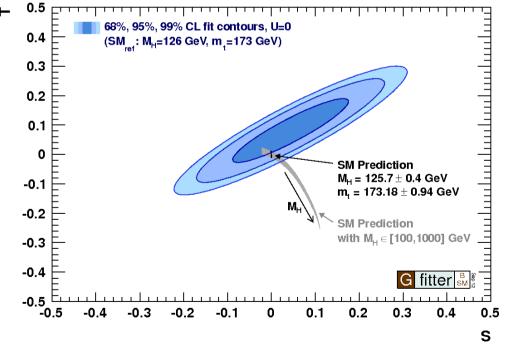
^(▽) The theoretical top mass uncertainty of 0.5 GeV is excluded.

 $^{^{(\}dagger)}$ In units of 10^{-5} .

 $^{^{(\}triangle)}$ Rescaled due to α_s dependence.

STU scans


Correlations between S,T and U:

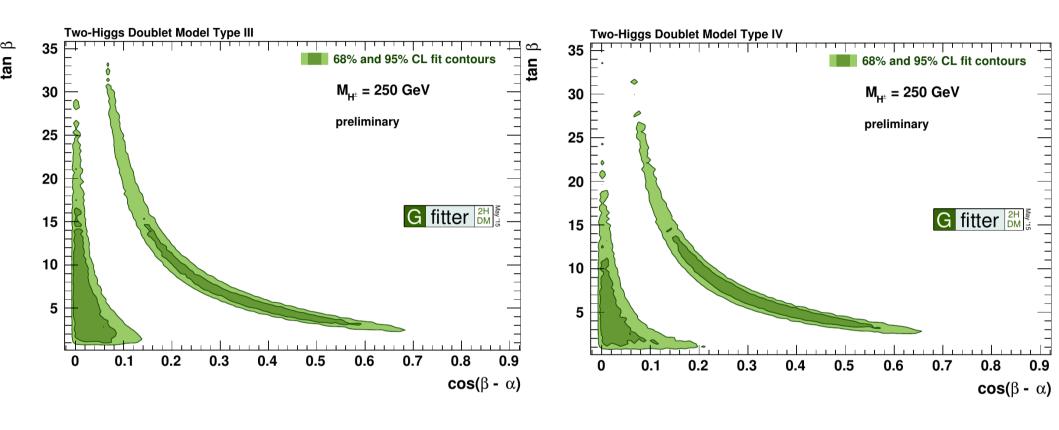

S T U

S 1 0.891 -0.540

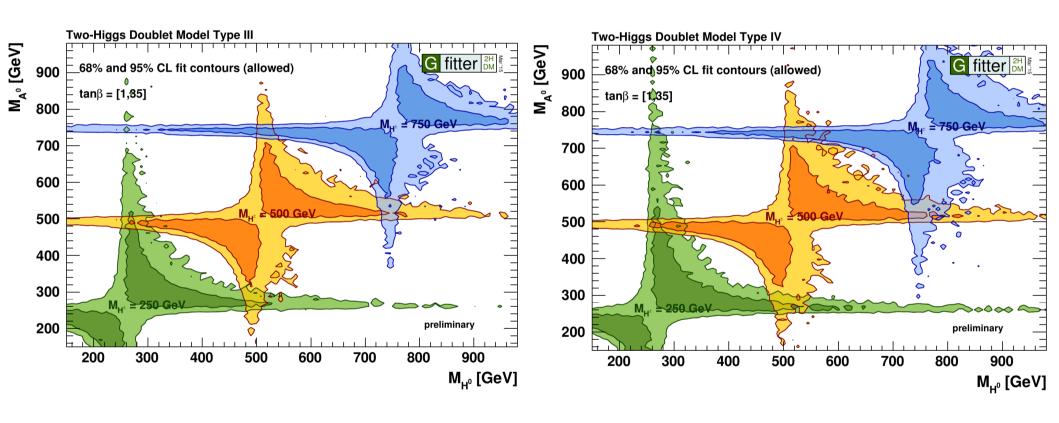
T 1 -0.803

U 1

2HDM Types


Parameterization for various 2HDMs (taken from arXiv:1106.0034)

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$
ξ_H^u	$\sin \alpha / \sin \beta$			
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ^u_A	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ_A^d	$-\cot \beta$	$\tan \beta$	$-\cot \beta$	$\tan \beta$
ξ_A^ℓ	$-\cot \beta$	$\tan \beta$	an eta	$-\cot \beta$


Similar constraints for models Type III and IV

2HDM: Mass Scans

Mass scans with constraints from Higgs BRs and EWPD for Type III and IV

Future Colliders

						Experi	mental	uncertainty	y source [±	 1σ]
Parameter	δ_{meas}	$\delta_{ m fit}^{ m tot}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	$\delta_{\mathrm{fit}}^{\mathrm{exp}}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \theta_{ m eff}^f$	$\delta\Deltalpha_{ m had}$	$\delta lpha_S$
Present uncertainties										
M_H [GeV]	0.4	$^{+33}_{-27}$	$^{+10}_{-8}$	$^{+31}_{-26}$	$^{+28}_{-23}$	$^{+5}_{-4}$	$^{+10}_{-7}$	$^{+29}_{-23}$	$^{+7}_{-5}$	$^{+4}_{-3}$
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
M_Z [MeV]	2.1	12.0	3.7	11.4	10.5	_	3.5	11.2	2.2	1.4
m_t [GeV]	0.8	2.5	0.6	2.4	2.3	0.4	_	2.3	0.5	0.6
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
$\Delta \alpha_{\rm had}$ (0)	10	44	13	42	31	6	10	41	_	2
					LHC prosp	ects				
M_H [GeV]	< 0.1	+21 -18	+4 -3	+20 -18	$^{+17}_{-14}$	+6 -5	+8 -7	+18 -16	+3 -2	+5 -4
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
M_Z [MeV]	2.1	7.2	1.4	7.0	6.0	_	2.8	5.9	0.8	1.9
m_t [GeV]	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	3.0	1.1	2.8	2.5	1.1	1.4	_	1.5	0.9
$\Delta \alpha_{\rm had}$ (0)	4.7	36	6	36	25	9	12	35	_	5
				ILC	C/GigaZ pr	rospects				
M_H [GeV]	< 0.1	$^{+7.4}_{-7.0}$	$^{+2.5}_{-2.3}$	$^{+6.9}_{-6.6}$	$+3.9 \\ -1.9$	$^{+4.3}_{-4.1}$	$^{+0.9}_{-0.8}$	$^{+3.3}_{-3.0}$	$^{+4.3}_{-4.1}$	$^{+0.3}_{-0.3}$
M_W [MeV]	5	2.3	1.3	1.9	_	1.7	0.3	1.3	0.7	0.3
M_Z [MeV]	2.1	2.7	1.0	2.6	2.5	_	0.4	1.3	1.9	0.2
m_t [GeV]	0.1	0.8	0.2	0.7	0.6	0.5	_	0.3	0.4	0.2
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	1.3	2.3	1.0	2.0	1.7	1.2	0.2	_	1.5	0.1
$\Delta \alpha_{\rm had}$ (°)	4.7	6.4	3.0	5.6	2.7	4.1	0.8	3.9	_	0.2

 $^{^{(\}circ)}$ In units of 10^{-5} . $^{(\star)}$ In units of 10^{-4}