Dalitz Plot Analyses with $B \to D_{hh}$ decays at LHCb

Wenbin Qian
on behalf of the LHCb Collaboration

LAPP, Annecy-le-vieux
IN2P3-CNRS et Université Savoie Mont Blanc

EPS-HEP 2015, Vienna, Austria
22–29 July 2015
General view of Dalitz plot analyses with $B \rightarrow Dhh$

Results of excited D mesons

Light meson structure studies

Conclusion
Analyses with $B \to D_{hh}$

<table>
<thead>
<tr>
<th>Decay Channels</th>
<th>Branching fractions ($\times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to \overline{D}^0 \pi^+ \pi^-$</td>
<td>$8.46 \pm 0.14 \pm 0.29 \pm 0.40$</td>
</tr>
<tr>
<td>$B_s^0 \to \overline{D}^0 f_0(980)$</td>
<td>$0.017 \pm 0.010 \pm 0.005 \pm 0.001$</td>
</tr>
<tr>
<td>$B^0 \to \overline{D}^0 K^+ \pi^-$</td>
<td>$0.92 \pm 0.06 \pm 0.07 \pm 0.06$</td>
</tr>
<tr>
<td>$B_s^0 \to \overline{D}^0 K^- \pi^+$</td>
<td>$0.47 \pm 0.09 \pm 0.06 \pm 0.05$</td>
</tr>
<tr>
<td>$B^0 \to \overline{D}^0 K^- K^+$</td>
<td>0.42 ± 0.19</td>
</tr>
<tr>
<td>$B_s^0 \to \overline{D}^0 K^- K^+$</td>
<td></td>
</tr>
<tr>
<td>$B^- \to D^+ K^- \pi^-$</td>
<td>$0.731 \pm 0.019 \pm 0.022 \pm 0.039$</td>
</tr>
</tbody>
</table>

... ……

Rich physics programs with $B \to D_{hh}$ decays at LHCb:

➢ Understand excited D meson spectroscopy

➢ Understand ππ, Kπ, KK spectrum

➢ can be used for further studies to extract CKM angle γ, $\beta(s)$

arXiv: 1505.01710; 3 fb⁻¹

arXiv: 1505.01654; 3 fb⁻¹

arXiv: 1505.01505; 3 fb⁻¹

PRD 90, 072003 (2014); 3 fb⁻¹

PRD 91, 092002 (2015); 3 fb⁻¹

PRL 109, 131801 (2012); 0.62 fb⁻¹
Dalitz plot analyses strategy (1)

Similar Dalitz plot analysis strategy applied:

> Optimized selection to achieve clean environment for Dalitz plot analyses

\[B^0 \rightarrow \bar{D}^0 \pi^+ \pi^- \]

arXiv: 1505.01710; 3 fb⁻¹

\[B^0 \rightarrow \bar{D}^0 K^+ \pi^- \]

arXiv: 1505.01505; 3 fb⁻¹
Dalitz plot analyses strategy (2)

Similar Dalitz plot analysis strategy applied:

➢ Efficiency obtained from Monte Carlo with data-driven method to correct for data and Monte Carlo difference

\[\text{arXiv: 1505.01710; 3 fb}^{-1} \quad B^0 \rightarrow \overline{D}^0 \pi^+ \pi^- \]

\[\text{arXiv: 1505.01505; 3 fb}^{-1} \quad B^0 \rightarrow \overline{D}^0 K^+ \pi^- \]

➢ Combinatorial background modeled from sidebands

➢ Peaking background either suppressed to negligible level or modeled using Dalitz model obtained from other analyses
Dalitz formalism with $B \to Dhh$

Modeled by Isobar formalism: total amplitude as coherent sum of quasi-two-body contributions ($\pi\pi$ S-wave also uses K-matrix formalism)

\[A(s_{12}, s_{23}) = \sum_j A_j = \sum_j a_j F_j(s_{12}, s_{23}) \]

\Rightarrow s_{12}, s_{23} are the invariant mass squared of two of the three decay particles

\Rightarrow sum over all resonant contributions

\Rightarrow a_j: complex fit parameters to describe relative contributions between resonances

\Rightarrow $F_j(s_{12}, s_{23})$: strong dynamics including resonant line shapes, angular distributions etc.

Output of Dalitz plot analyses

\Rightarrow Resonant contributions, relative amplitudes and phases of resonances, fit fractions, resonant properties etc.
Spectroscopy of charmed mesons

- Tests of HQET, potential models, Lattice QCD, ...
- Inputs for other studies, exotic states, R(D^{(*)}), ...

States appear in doublet with similar widths: one with “natural” parity \((0^+, 1^-, 2^+, \ldots)\) and one with “unnatural” parity \((0^-, 1^+, 2^-, \ldots)\)

Similar for D^{*0}, D^{*+}, Ds^{*+}

Excited D meson states

States in $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$, $B^0 \rightarrow \overline{D}^0 K^+ \pi^-$, $B^- \rightarrow D^+ K^- \pi^-$, Dalitz plot analysis

$\theta(D\pi)$ is helicity angle defined between directions of two pions in the rest frame of resonance

- $D_0(2400)$, $D_2(2460)$ dominant in all analyses
- Many new D^* states observed in inclusive D spectroscopy: $D^*(2650)$, $D^*(2760)$, $D^*(3000)$
- A D^* with spin 3 and mass around 2800 MeV observed in $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$ analysis
- A D^* with spin 1 and mass around 2791 MeV observed in $B^- \rightarrow D^+ K^- \pi^-$ analysis

$B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$

\[\begin{align*}
D_3^* (2806) & \quad 3^- \\
D_2(2806) & \quad 2^- \\
D_2(2801) & \quad 2^- \\
D_3^* (2796) & \quad 1^+ \\
D_4^* (3084) & \quad 4^+ \\
D_3(3079) & \quad 3^+ \\
D_3(3074) & \quad 3^+ \\
D_2^* (3074) & \quad 2^+ \\
D_1^* (2618) & \quad 1^+ \\
D_0(2558) & \quad 0^+ \\
D_0^* (2380) & \quad 0^+ \\
D_2^* (2479) & \quad 2^+ \\
D_1(2469) & \quad 1^+ \\
D_1(2419) & \quad 1^+ \\

\end{align*} \]
Excited D_s meson states

<table>
<thead>
<tr>
<th>State</th>
<th>Mass</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{s1}^*(2700)^-$</td>
<td>$2710 \pm 2^{+12}_{-7}$</td>
<td>$149 \pm 7^{+39}_{-52}$</td>
<td>Seen in DK and D^*K</td>
</tr>
<tr>
<td>$D_{sJ}^*(2860)^-$</td>
<td>$2862 \pm 2^{+5}_{-2}$</td>
<td>$48 \pm 3 \pm 6$</td>
<td>Seen in DK and D^*K</td>
</tr>
<tr>
<td>$D_{sJ}(3040)^-$</td>
<td>$3044 \pm 8^{+30}_{-4}$</td>
<td>$239 \pm 35^{+46}_{-42}$</td>
<td>Seen in D^*K only</td>
</tr>
<tr>
<td>$D_{s1}^*(2700)^-$</td>
<td>$2709.2 \pm 1.9 \pm 4.5$</td>
<td>$115.8 \pm 7.3 \pm 12.1$</td>
<td>Only DK studied</td>
</tr>
<tr>
<td>$D_{sJ}^*(2860)^-$</td>
<td>$2866.1 \pm 1.0 \pm 6.3$</td>
<td>$69.9 \pm 3.2 \pm 6.6$</td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow Many new D_s^* states also observed in inclusive D_s spectroscopy: $D_s^*(2700)$, $D_s^*(2860)$, $D_s^*(3040)$

\Rightarrow A structure around 2860 MeV with both spin 1 and spin 3 resonant contributions is found

$B_s^0 \rightarrow \bar{D}^0 K^- \pi^+$
Excited D meson masses and widths

- Spin 3 D* meson around 2800 MeV from $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$

<table>
<thead>
<tr>
<th>Isobar</th>
<th>K-matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_3^*(2760)$</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Γ</td>
</tr>
</tbody>
</table>

- Spin 1 D* meson around 2791 MeV from $B^- \rightarrow D^+ K^- \pi^-$

| $D_1^*(2760)$ | m | 2791 ± 18 ± 11 ± 6 |
| | Γ | 177 ± 32 ± 20 ± 7 |

- Spin 1 and spin 3 mixture of D_s^* meson around 2860 MeV from $B_{s0}^0 \rightarrow \bar{D}^0 K^- \pi^+$

$D_s^*(2860)$	m	2859 ± 12 ± 6 ± 23
	Γ	159 ± 23 ± 27 ± 72
$D_{s3}^*(2860)$	m	2860.5 ± 2.6 ± 2.5 ± 6.0
	Γ	53 ± 7 ± 4 ± 6

- More precise and accurate also for other D* states like $D_0^*(2400), D_2^*(2460)$ etc compared to previous measurements
Dalitz fit display: $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$

larger subcomponent due to interference
Dalitz fit display: $B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Isobar ($\times 10^{-5}$)</th>
<th>K-matrix ($\times 10^{-5}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(500)$</td>
<td>$11.2 \pm 0.8 \pm 0.5 \pm 2.1 \pm 0.5$</td>
<td>n/a</td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>$1.34 \pm 0.25 \pm 0.10 \pm 0.46 \pm 0.06$</td>
<td>n/a</td>
</tr>
<tr>
<td>$f_0(2020)$</td>
<td>$1.35 \pm 0.31 \pm 0.14 \pm 0.85 \pm 0.06$</td>
<td>n/a</td>
</tr>
<tr>
<td>S-wave</td>
<td>$14.1 \pm 0.5 \pm 0.6 \pm 1.3 \pm 0.7$</td>
<td>$14.2 \pm 0.6 \pm 1.5 \pm 0.9 \pm 0.7$</td>
</tr>
<tr>
<td>$\rho(770)$</td>
<td>$32.1 \pm 1.0 \pm 1.2 \pm 0.9 \pm 1.5$</td>
<td>$31.0 \pm 1.0 \pm 2.1 \pm 0.7 \pm 1.5$</td>
</tr>
<tr>
<td>$\omega(782)$</td>
<td>$0.42 \pm 0.11 \pm 0.02 \pm 0.03 \pm 0.02$</td>
<td>$0.43 \pm 0.11 \pm 0.02 \pm 0.02 \pm 0.02$</td>
</tr>
<tr>
<td>$\rho(1450)$</td>
<td>$1.36 \pm 0.28 \pm 0.08 \pm 0.19 \pm 0.06$</td>
<td>$1.91 \pm 0.37 \pm 0.73 \pm 0.19 \pm 0.09$</td>
</tr>
<tr>
<td>$\rho(1700)$</td>
<td>$0.33 \pm 0.11 \pm 0.06 \pm 0.05 \pm 0.02$</td>
<td>$0.73 \pm 0.18 \pm 0.53 \pm 0.10 \pm 0.03$</td>
</tr>
<tr>
<td>$f_2(1270)$</td>
<td>$9.5 \pm 0.5 \pm 0.4 \pm 1.0 \pm 0.4$</td>
<td>$9.1 \pm 0.6 \pm 0.8 \pm 0.5 \pm 0.4$</td>
</tr>
<tr>
<td>$D^*_0(2400)^-$</td>
<td>$7.7 \pm 0.5 \pm 0.3 \pm 0.3 \pm 0.4$</td>
<td>$8.0 \pm 0.5 \pm 0.8 \pm 0.4 \pm 0.4$</td>
</tr>
<tr>
<td>$D^*_2(2460)^-$</td>
<td>$24.4 \pm 0.7 \pm 1.0 \pm 0.4 \pm 1.2$</td>
<td>$23.8 \pm 0.7 \pm 1.2 \pm 0.5 \pm 1.1$</td>
</tr>
<tr>
<td>$D^*_3(2760)^-$</td>
<td>$1.03 \pm 0.16 \pm 0.07 \pm 0.08 \pm 0.05$</td>
<td>$1.34 \pm 0.19 \pm 0.16 \pm 0.06 \pm 0.06$</td>
</tr>
</tbody>
</table>

arXiv: 1505.01710; 3 fb$^{-1}$
Light meson structure (1)

2-q model

\[|f_0(500)⟩ = \frac{1}{\sqrt{2}} (|\bar{u}u⟩ + |\bar{d}d⟩) \equiv |\bar{n}n⟩, \]
\[|f_0(980)⟩ = |\bar{s}s⟩. \]

13

\[|f_0(500)⟩ = |\bar{s}s⟩ \cos θ + |\bar{n}n⟩ \sin θ, \]
\[|f_0(980)⟩ = -|\bar{s}s⟩ \sin θ + |\bar{n}n⟩ \cos θ. \]

4-q model

\[|f_0(500)⟩ = |\bar{u}u⟩ |\bar{d}d⟩ \]
\[|f_0(980)⟩ = |\bar{b}b⟩ |\bar{d}d⟩ \]

➢ Proposals given to use \(B_{(s)} \rightarrow J/ψππ \) to understand nature of light mesons \(f_0(500) \) and \(f_0(980) \) and has been performed by LHCb to set upper limits on mixing angles

➢ Similar studies can also be done for \(B_{(s)} \rightarrow D^0ππ \) decays
Light meson structure (2)

\[
\begin{align*}
\mathcal{B}(B^0 \rightarrow \overline{D}^0 f_0) & \quad \mathcal{B}(B_s^0 \rightarrow \overline{D}^0 f_0) \\
 f_0(500) & : (11.2 \pm 0.8 \pm 0.5 \pm 2.1 \pm 0.5) \times 10^{-5} \\
f_0(980) & : (1.34 \pm 0.25 \pm 0.10 \pm 0.46 \pm 0.06) \times 10^{-5} \\
 & \quad (1.7 \pm 1.0 \pm 0.5 \pm 0.1) \times 10^{-6}
\end{align*}
\]

2-q model

4-q model

-arXiv: 1505.01710; 3 fb\(^{-1}\)
arXiv: 1505.01654; 3 fb\(^{-1}\)

Mixing angles of 2-q and 4-q model given as a function of form factor ratios

Results from \(B_s^0 \rightarrow \overline{D}^0 f_0(980)\), \(B^0 \rightarrow \overline{D}^0 f_0(980)\) and \(B^0 \rightarrow \overline{D}^0 f_0(500)\) indicate complicated nature of the system
Other results

<table>
<thead>
<tr>
<th>Channels</th>
<th>Isobar x 10^{-5}</th>
<th>K-Matrix x 10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(770)(\pi^+\pi^-)$</td>
<td>$32.1 \pm 1.4 \pm 1.2 \pm 0.9 \pm 1.5$</td>
<td>$31.0 \pm 1.4 \pm 2.1 \pm 0.7 \pm 1.5$</td>
</tr>
</tbody>
</table>

> Isospin symmetry between three decays: $B^+\rightarrow D^0\rho^+$, $B^0\rightarrow D^-\rho^+$, $B^0\rightarrow \bar{D}^0\rho^0$,

$$A(\bar{D}^0\rho^+) = \sqrt{3}A_{3/2},$$
$$A(D^-\rho^+) = \sqrt{1/3}A_{3/2} + \sqrt{2/3}A_{1/2},$$
$$A(\bar{D}^0\rho^0) = \sqrt{2/3}A_{3/2} - \sqrt{1/3}A_{1/2},$$

In factorization approximation:

$$R_{D\rho} = \frac{|A_{1/2}|}{\sqrt{2}|A_{3/2}|} = 1 + \mathcal{O}(\Lambda_{QCD}/m_b)$$

$$\delta_{D\rho} = \arg\left(\frac{A_{1/2}}{A_{3/2}}\right) \sim \mathcal{O}(\Lambda_{QCD}/m_b)$$

<table>
<thead>
<tr>
<th>Model</th>
<th>$R_{D\rho}$</th>
<th>$\cos\delta_{D\rho}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isobar</td>
<td>0.69 ± 0.15</td>
<td>$0.984^{+0.113}_{-0.048}$</td>
</tr>
<tr>
<td>K-matrix</td>
<td>0.69 ± 0.15</td>
<td>$0.987^{+0.114}_{-0.048}$</td>
</tr>
</tbody>
</table>

> Uncertainties mainly from Br of $D^+\rho^+$ and $D^0\rho^-$

> The results are not different from the prediction of factorization
Conclusion

➢ Rich physics in $B \rightarrow Dhh$ systems using Dalitz plot techniques

➢ Studies have been performed to understand their resonant contributions, excited D^* spectroscopy, light meson structures etc.

➢ Stay tuned for more analyses in the $B \rightarrow Dhh$ system

Thank You