AFTER@LHC: A Fixed Target ExpeRiment for hadron, heavy-ion and spin physics: Status and short-range plan

Barbara Trzeciak
Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague
Outline

✓ Advantages of a fixed target experiment at LHC
✓ Internal gas target vs beam extraction with a bent crystal
✓ Expected luminosities
✓ Physics Highlights
✓ Feasibility studies of quarkonium production
Outline

✓ Advantages of a fixed target experiment at LHC
✓ Internal gas target vs beam extraction with a bent crystal
✓ Expected luminosities
✓ Physics Highlights
✓ Feasibility studies of quarkonium production

WHAT IS AFTER@LHC AND WHAT FOR?

AFTER@LHC is a proposal for a multi-purpose fixed target experiment using the multi-TeV proton or heavy ion beams of the LHC

• Advance our understanding of the large-x gluon antiquark and heavy-quark content in the nucleon and nucleus
• Dynamics and spin of gluons inside (un)polarised nucleons
• Heavy-ion collisions towards large rapidities
Advantages of a fixed-target experiment at LHC

✓ Advantages of a fixed-target experiment:
 • high luminosities with dense targets
 • target versatility
 • possibility to polarize target ➢ spin physics program
 • access to large Feynman $|x_F|$

➢ With LHC beams:

7 TeV proton beam on a fixed target

| CMS energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV |
| Boost: $\gamma = \sqrt{s} / (2m_p) \approx 60$ |
| Rapidity shift: $y_{CM} = 0 \rightarrow y_{lab} = 4.8$ |

2.76 TeV Pb beam on a fixed target

| CMS energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV |
| Boost: $\gamma \approx 40$ |
| Rapidity shift: $y_{CM} = 0 \rightarrow y_{lab} = 4.3$ |
Advantages of a fixed target experiment at LHC

✓ Testing QCD at large $x = (0.3,1)$

✓ Entire forward hemisphere – $y_{CM} > 0$ – within: $0^\circ < \theta_{lab} < 1^\circ$ - large occupancy – more challenging

✓ Backward region - $y_{CM} < 0$ – at large angles in the lab frame – low occupancy, no constrain from a beam pipe
 • Backward physics accessible
 • Access to partons with momentum fraction $x_2 \rightarrow 1$ in the target ($x_F \rightarrow -1$)
Possible fixed-target mode

UA9: test @SPS on the crystal with proton and ion beams **LUA9** (beam bending experiment using crystal): approved by LHCC

- 2 bent crystals installed in IR7 during LS1, 2015/2016 first tests with beams

Proton beam extraction:

- Single or multi-pass extraction efficiency of 50%

 - LHC beam loss $\sim 10^{9} \text{p}^{+} \text{s}^{-1}$ - extracted beam: $5 \times 10^{8} \text{p}^{+} \text{s}^{-1}$

Ion beam extraction

- Successfully tested at the SPS, should also work at the LHC (P. Ballin et al, NIMB 267 (2009) 2952)
Beam extraction using bent crystal

Possible fixed-target mode

- **UA9**: test @SPS on the crystal with proton and ion beams. **LUA9** (beam bending experiment using crystal): approved by LHCC
 - 2 bent crystals installed in IR7 during LS1, 2015/2016 first tests with beams

- **Proton beam extraction**:
 - Single or multi-pass extraction efficiency of 50%
 - LHC beam loss $\sim 10^9 p^+ s^{-1}$ - extracted beam: $5 \times 10^8 p^+ s^{-1}$

- **Ion beam extraction**
 - Successfully tested at the SPS, should also work at the LHC (P. Ballin et al, NIMB 267 (2009) 2952)

\rightarrow Deflecting the beam halo at 7σ distance to the beam
\rightarrow **No loss in the LHC beam**
Internal gas target, *SMOG@LHC*

Possible fixed-target mode

- Low density Ne-gas injected into VELO in LHCb
- Short pNe pilot run at $\sqrt{s_{NN}} = 87$ GeV in 2012

 LHCb-CONF-2012-034

- Short PbNe pilot run at $\sqrt{s_{NN}} = 54$ GeV in 2013

 Ne target density: 1.5×10^{-7} mbar

- Noble gases favored
- As for now, target polarization is not possible with SMOG
- *Internal gas target can be polarized*, would be another system with respect to SMOG
Luminosities in pH and pA at $\sqrt{s_{NN}} = 115$ GeV

- **Instantaneous luminosity:**
 \[L = \phi_{\text{beam}} \times N_{\text{target}} = \phi_{\text{beam}} \times (\rho \times l \times N_A) / A \]

 l is a target thickness

- $\phi_{\text{beam}} = 5 \times 10^8 \text{ p}^+ \text{ s}^{-1}$ (50% of the beam loss)

- **Integrated luminosity** - LHC year – 9 months running = 10^7 s

<table>
<thead>
<tr>
<th>Target</th>
<th>ρ (g.cm$^{-3}$)</th>
<th>A</th>
<th>L (μb$^{-1}$s$^{-1}$)</th>
<th>$\int L$ (pb$^{-1}$yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liq H$_2$ (1m)</td>
<td>0.07</td>
<td>1</td>
<td>2000</td>
<td>20000</td>
</tr>
<tr>
<td>Liq D$_2$ (1m)</td>
<td>0.16</td>
<td>2</td>
<td>2400</td>
<td>24000</td>
</tr>
<tr>
<td>Be (1cm)</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu (1cm)</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W (1cm)</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb (1cm)</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>

- Large luminosities comparable to LHC - with 1 m long H$_2$(D$_2$) target, 3 orders of magnitude larger that at RHIC
Higher instantaneous luminosities using a bent crystal compare to what is expected from SMOG from the pilot run - 62 μb$^{-1}$s$^{-1}$ with 1cm Be target vs 8 μb$^{-1}$s$^{-1}$ for Ne in SMOG.

Higher Ne pressure needed in SMOG in order to reach comparable luminosity as in the bent crystal case.

assuming 1 year of running with a proton beam and $P \approx 10^{-5}$ mbar, one can obtain comparable luminosity as in the bent crystal case.

- Increasing the pressure is not expected to decrease the beam life time.
Luminosities in PbA at $\sqrt{s_{NN}} = 72$ GeV

- Instantaneous luminosity:
 \[L = \phi_{\text{beam}} \times N_{\text{target}} = \phi_{\text{beam}} \times (\rho \times l \times N_A) / A \]

- $\phi_{\text{beam}} = 2 \times 10^5$ Pb s$^{-1}$

- Integrated luminosity - LHC year – 1 month running = 10^6 s

<table>
<thead>
<tr>
<th>Target</th>
<th>ρ (g.cm$^{-3}$)</th>
<th>A</th>
<th>L (mb$^{-1}$s$^{-1}$)</th>
<th>$\int L$ (nb$^{-1}$yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liq H$_2$ (1m)</td>
<td>0.07</td>
<td>1</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Liq D$_2$ (1m)</td>
<td>0.16</td>
<td>2</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Be (1cm)</td>
<td>1.85</td>
<td>9</td>
<td>25</td>
<td>620</td>
</tr>
<tr>
<td>Cu (1cm)</td>
<td>8.96</td>
<td>64</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>W (1cm)</td>
<td>19.1</td>
<td>185</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Pb (1cm)</td>
<td>11.35</td>
<td>207</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

- Nominal LHC luminosity for PbPb 0.5 nb$^{-1}$
Physics Highlights: AFTER@LHC

Many more ideas for a fixed target experiment at LHC submitted to a Special Issue in Advances in High Energy Physics

http://after.in2p3.fr/after/index.php/Recent_published_ideas_in_favour_of_AFTER@LHC

Heavy-ion physics

Exclusive reactions

Spin physics studies

Hadron structure

Feasibility study and technical ideas
Physics Highlights: AFTER@LHC

pp and pA @ $\sqrt{s_{NN}} = 115$ GeV

- **Understand dynamic of large-x gluon in nucleon**

 - Quarkonia, Isolated photons, High-p_T jets (> 20 GeV/c)

 - Gluon distribution function in the proton: very large uncertainty at large x_B, also at large Q

 - Unknown for the neutron
Physics Highlights: AFTER@LHC

pp and pA @ $\sqrt{s_{NN}} = 115$ GeV

- Understand dynamic of large-x gluon in nucleon
 - Quarkonia, Isolated photons, High-p_T jets (> 20 GeV/c)
 - Gluon distribution function in the proton: very large uncertainty at large x, also at large Q
 - Unknown for the neutron

- Heavy-quark distribution at large x
 - Open charm and beauty
 - Pin down intrinsic charm
 • Intrinsic heavy quarks are rigorous features of QCD
 • Different charm pdfs (DGLAP or models with intrinsic charm) are in agreement with DIS data

CTEQ6.5C with intrinsic charm

Physics Highlights: AFTER@LHC
pp and pA @ $\sqrt{s_{NN}} = 115$ GeV

- **Understand dynamic of large-x gluon in nucleon**
 - Quarkonia, Isolated photons, High-p_T jets (> 20 GeV/c)
 - Gluon distribution function in the proton: very large uncertainty at large x, also at large Q
 - Unknown for the neutron

- **Heavy-quark distribution at large x**
 - Open charm and beauty
 - Pin down intrinsic charm
 - Intrinsic heavy quarks are rigorous features of QCD
 - Different charm pdfs (DGLAP or models with intrinsic charm) are in agreement with DIS data

- With AFTER@LHC
 - Good coverage in the target rapidity region
 - High luminosity to reach large x_B
 - Different targets: hydrogen, deuteron (neutron)

Physics Highlights: AFTER@LHC

pp and pA @ $\sqrt{s_{\text{NN}}} = 115$ GeV

✓ Nucleon partonic structure

• Gluon pdf in the proton – large uncertainties at high x

 $g_p(x) = g_n(x)$?

 → Measure: quarkonia, isolated photons, high-p_T jets

 → Multiple probes to check factorization

✓ Heavy-quark distribution at large x in the proton

 → Measure: open heavy flavours

✓ Spin physics

• Gluon Sivers effect

• Linearly polarized gluons: h_{1g}^{\perp}, “Boers-Mulder” effect

• Single Spin Asymmetry in DY and HF studies

See also: arXiv:1502.04021;
arXiv:1504.03791; arXiv:1504.04332,

✓ W and Z production near threshold ?

With AFTER@LHC: boost – better access to the low-p_T, C-even quarkonia
Physics Highlights: AFTER@LHC
\[PbA @ \sqrt{s_{NN}} = 72 \text{ GeV}, \ pA @ \sqrt{s_{NN}} = 115 \text{ GeV}\]

- **Gluon distribution in nucleus at large x**
 - Quarkonia
 - Isolated photons
 - High-\(p_T\) jets (> 20 GeV/c)
 - Large uncertainty in nuclei at large x, unknown gluon EMC effect
 - With AFTER@LHC:
 - Access to target \(x_g = 0.3 - 1\) (>1 Fermi motion in nucleus)
 - With different targets:
 - Probing A dependence of shadowing and nuclear matter effects
Gluon distribution in nucleus at large x
- Complementary to EIC, LHeC
 - Quarkonia, isolated photons, high-p_T jets

Quark-Gluon Plasma
- Experimental probes
 - Quarkonia
 - HF jets quenching
 - Low mass lepton pairs
 - Direct photons
 - (Sequential?) suppression of different quarkonium states – good resolution needed
 - In PbA, different nuclei, A-dependent studies
 - Precise estimation of Cold Nuclear Matter effects from pA

Ultra-peripheral collisions
First simulations

Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)

L. Massacrier,1,2 B. Trzeciak,3 F. Fleuret,4 C. Hadjidakis,2 D. Kikola,5 J.P. Lansberg,2 and H.-S. Shao6

1LAL, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France
2IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France
3FNSPE, Czech Technical U., Prague, Czech Republic
4Laboratoire Leprince Ringuet, École Polytechnique, CNRS/IN2P3, 91128 Palaiseau, France
5Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
6PH Department, TH Unit, CERN, CH-1211, Geneva 23, Switzerland

(Dated: June 17, 2015)

Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities –far negative Feynman-x– using conventional detection techniques. At the nominal LHC energies, quarkonia can be studied in detail in \(p + p \), \(p + d \) and \(p + A \) collisions at \(\sqrt{s_{NN}} = 115 \text{ GeV} \) as well as in \(\text{Pb} + p \) and \(\text{Pb} + A \) collisions at \(\sqrt{s_{NN}} = 72 \text{ GeV} \) with luminosities roughly equivalent to that of the collider mode, i.e. up to 20 fb\(^{-1}\) year\(^{-1}\) in \(p + p \) and \(p + d \) collisions, up to 0.6 fb\(^{-1}\) year\(^{-1}\) in \(p + A \) collisions and up to 10 nb\(^{-1}\) year\(^{-1}\) in \(\text{Pb} + A \) collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.

\textit{arXiv: 1504.5145}
Charge particle multiplicities, for all possible fixed target modes, p+Pb, Pb+H, Pb+Pb, are smaller than the ones reached in the collider modes. A detector with the LHCb capabilities will be able to run in such conditions (LHCb was used in p+Pb and Pb+p at 5 TeV).
Expected quarkonium yield

pp and pA @ √s = 115 GeV

pp

- **1 m H₂ target**
 - 1000 times more statistics than at RHIC (@200 GeV)
 - Comparable statistics to LHC

<table>
<thead>
<tr>
<th>Target</th>
<th>∫L (fb⁻¹.yr⁻¹)</th>
<th>N(J/Ψ) yr⁻¹ (A L²σ)</th>
<th>N(ϒ) yr⁻¹ (A L²σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H₂</td>
<td>20</td>
<td>4.0 10⁸</td>
<td>8.0 10⁵</td>
</tr>
<tr>
<td>1 m Liq. D₂</td>
<td>24</td>
<td>9.6 10⁸</td>
<td>1.9 10⁶</td>
</tr>
<tr>
<td>LHC pp 14 TeV (low pT)</td>
<td>0.05 (ALICE) 2 LHCb</td>
<td>3.6 10⁷ (1.4 10⁵)</td>
<td>1.8 10⁵ (7.2 10⁶)</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2 10⁻²</td>
<td>4.8 10⁵</td>
<td>1.2 10³</td>
</tr>
</tbody>
</table>

pA

- **1 cm Pb target**
 - 100 times more statistics than at RHIC (dAu@200 GeV)
 - Comparable statistics to LHC

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>∫L (fb⁻¹.yr⁻¹)</th>
<th>N(J/Ψ) yr⁻¹ (A L²σ)</th>
<th>N(ϒ) yr⁻¹ (A L²σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10⁸</td>
<td>2.2 10⁵</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10⁸</td>
<td>1.1 10⁶</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10⁹</td>
<td>2.3 10⁶</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10⁸</td>
<td>1.3 10⁶</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10⁻⁴</td>
<td>1.0 10⁷</td>
<td>7.5 10⁴</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5 10⁻⁴</td>
<td>2.4 10⁶</td>
<td>5.9 10³</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8 10⁻⁶</td>
<td>1.2 10⁴</td>
<td>18</td>
</tr>
</tbody>
</table>

See also: Advances in High Energy Physics, Article ID 726393, in press.
arXiv:1504.0653
Expected quarkonium yield

\[\text{PbA@} \sqrt{s_{NN}} = 72 \text{ GeV} \]

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int \mathcal{L} \text{ (nb}^{-1}\text{.yr}^{-1}))</th>
<th>(\frac{N(J/\Psi) \text{ yr}^{-1}}{AB \mathcal{L} B \sigma_{\Psi}})</th>
<th>(\frac{N(\Upsilon) \text{ yr}^{-1}}{AB \mathcal{L} B \sigma_{\Upsilon}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H(_2)</td>
<td>207.1</td>
<td>800</td>
<td>3.4 \times 10^6</td>
<td>6.9 \times 10^3</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1 \times 10^5</td>
<td>1.9 \times 10^3</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3 \times 10^6</td>
<td>0.9 \times 10^3</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7 \times 10^6</td>
<td>1.9 \times 10^3</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7 \times 10^6</td>
<td>1.1 \times 10^4</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3 \times 10^6</td>
<td>3.6 \times 10^4</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4 \times 10^6</td>
<td>1.1 \times 10^4</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0 \times 10^4</td>
<td>61</td>
</tr>
</tbody>
</table>

- **1 cm Pb target**
 - Similar statistics than at RHIC @200 GeV
 - 2 order of magnitude larger that at RHIC @62 GeV

Detailed study of quarkonium states
First simulations of quarkonia, \(pp \) at \(\sqrt{s} = 115 \) GeV

- PYTHIA 8.185, fast simulations with LHCb-like reconstruction parameters

 ✓ **Requirements:**
 - Momentum resolution: \(\Delta p/p = 0.5\% \)
 - \(\mu \) identification efficiency: 98%

 ✓ **Single \(\mu \) cuts:**
 - \(2 < \eta_{\mu} < 5 \)
 - \(p_T^{\mu} > 0.7 \) GeV/c

 ✓ **\(\mu \) misidentification (with \(\pi \) or \(K \))**

 ✓ **Input for quarkonium signals:**
 - HELAC-Onia

 ✓ **Estimation of different dimuon background sources:**
 - Uncorrelated background – min bias PYTHIA 8
 - Drell-Yan – HELAC-Onia
 - cc, bb – HELAC-Onia

Efficiency of background \(\mu \) pairs
ψ and γ signal simulations with full background

\[J/\psi / \psi(2S) \rightarrow \mu^+ \mu^- \]
\[\Upsilon(nS) \rightarrow \mu^+ \mu^- \]

\[\int L = 10 \text{ fb}^{-1}, \text{0.5 year of data taking with 1m H}_2 \text{ target (in the crystal case)} \]

- Dominant source of background is uncorrelated background
- Dominant source of background is DY
- Clear separation of different states
J/ψ signal simulation with full background \quad $J/\psi \rightarrow \mu^+ \mu^-$

$\int L = 10 \text{ fb}^{-1}$, **0.5 year of data taking with 1m H$_2$ target** (in the crystal case)

- p_T and rapidity Distributions for the J/ψ and different backgrounds differ.
- In more backward or forward rapidity regions, the signal to background ratio increases
Quarkonium acceptance and p_T reach

\[\int \mathcal{L} = 10 \text{ fb}^{-1}, \textbf{0.5 year of data taking with 1m H}_2 \textbf{ target} \] (in the crystal case)

- J/ψ and $\psi(2S)$ signals can be studied up to $\sim 15 \text{ GeV/c}$, $\Upsilon(nS)$ up to $\sim 10 \text{ GeV/c}$
- All quarkonium states can be measured down to 0 GeV/c
- Similar p_T reach expected for pA

- Study is limited to the rapidity range of $2 < y < 5 \ (2 < \eta_\mu < 5)$
- J/ψ and $\psi(2S)$ signals can be studied in the whole range, lowest y for $\Upsilon(nS)$ is $\sim 2.5-3$
Impact of nPDF effects on quarkonium R_{pPb}

- Combination of measurements of $\Upsilon(nS)$, J/ψ and $\psi(2S)$ for $-3 < y_{CMS} < 0$ (as LHCb detector would do) will allow to pin down the existence of a possible gluon EMC and antishadowing effect.

Simulations done using JIN with EPS09

Very good statistical precision!

See also: Advances in High Energy Physics, Article ID 492302 and 783134, in press; arXiv:1507.05413; arXiv:1504.07428

pp: $\int L = 10 \text{ fb}^{-1}$, pPb: $\int L = 100 \text{ pb}^{-1}$
Summary

➢ Many physics opportunities with a fixed target experiment using LHC p and Pb beams
➢ Novel testing ground for QCD in the high-x frontier with AFTER@LHC
➢ Extensive spin program with a polarized target
➢ Using dense targets high luminosities can be achieved
➢ Target versatility: hydrogen, deuteron, nucleus – nuclear effects and QGP
➢ First fast simulations performed
 ➔ Simulations in pA, AA and of different quarkonium states in progress

Thank you!
BACKUP
Outlook

➢ Special Issue in Advances in High Energy Physics
➢ Expression of interest expected in 2015/2016
➢ Development of the fast simulation framework

after.in2p3.fr
Beam extraction using bent crystal

✓ Possible fixed-target mode

Standard collimation today

Crystal-based collimation
- UA9 (@SPS)
- LUA9 (@LHC)

To beam extraction
- CRYSBEAM (@SPS then LHC)
- AFTER@LHC

W. Scandale et al., JINST 6 T10002 (2011)

UA9 experiment @ SPS, 15/10/2014

S. Montesano, W. Scandale, Joint LUA9-AFTER meeting, Nov. 2013
Beam extraction using bent crystal

✓ Beam collimation @LHC: amorphous collimator, inefficiency of 0.2% (3.5 TeV p beam)
 • Expected bent crystal inefficiency: 0.02%

UA9: test @SPS on the crystal with proton and ion beams
LUA9 (beam bending experiment using crystal): approved by LHCC
 2 bent crystals installed in IR7 during LS1
 2015/2016 first tests with beams

➢ Proton beam extraction:
 • Single or multi-pass extraction efficiency of 50%
 • LHC beam loss ~ $10^9 \text{p}^+ \text{s}^{-1}$ - extracted beam: $5 \times 10^8 \text{p}^+ \text{s}^{-1}$
 • Extremely small emittance: beam size (in the extraction direction) 950m after the extraction: 0.3mm

➢ Ion beam extraction
 • Successfully tested at the SPS, should also work at the LHC (P. Ballin et al, NIMB 267 (2009) 2952)

→ Deflecting the beam halo at 7σ distance to the beam
 → No loss in the LHC beam
Physics Highlights: AFTER @ LHC

pp and pA @\(\sqrt{s_{NN}} = 115 \) GeV

(Gluon) Sivers effects with a transversely polarized target

Gluon Sivers effect: correlation between the gluon transverse momentum \(k_T \) and the proton spin

- The target rapidity region \((x_F < 0) \) corresponds to high \(x \uparrow \) \((x_F \rightarrow -1) \) where the \(k_T \)-spin correlation is the largest

- Transverse single spin asymmetries studied using gluon sensitives probes:
 - quarkonia \((J/\psi, \ U, \chi_c) \)
 - B & D mesons production
 - \(\gamma, \gamma\text{-jet}, \gamma\text{-}\gamma \) also \(J/\psi\text{-}\gamma \)

L. Massacrier – SPIN 2014
Conference
Physics Highlights: AFTER @ LHC

pp and pA @ $\sqrt{s_{NN}} = 115$ GeV

TMDs STUDIES WITH AFTER@LHC (WITH A POLARIZED TARGET)

(Quark) Sivers effects with a transversely polarized target

- Can be probed with the Drell-Yan

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>energy (GeV)</th>
<th>\sqrt{s} (GeV)</th>
<th>x_F</th>
<th>\mathcal{L} (nb$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>$p+p^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.01 \pm 0.9</td>
<td>1</td>
</tr>
<tr>
<td>COMPASS</td>
<td>$\pi^\pm + p^\uparrow$</td>
<td>160</td>
<td>17.4</td>
<td>0.2 \pm 0.3</td>
<td>2</td>
</tr>
<tr>
<td>COMPASS</td>
<td>$\pi^\pm + p^\uparrow$</td>
<td>160</td>
<td>17.4</td>
<td>\sim 0.05</td>
<td>2</td>
</tr>
<tr>
<td>RHIC</td>
<td>$p^\uparrow + p$</td>
<td>collider</td>
<td>500</td>
<td>0.05 \pm 0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>J–PARC</td>
<td>$p^\uparrow + p$</td>
<td>50</td>
<td>10</td>
<td>0.5 \pm 0.9</td>
<td>1000</td>
</tr>
<tr>
<td>PANDA</td>
<td>$\bar{p} + p^\uparrow$</td>
<td>15</td>
<td>5.5</td>
<td>0.2 \pm 0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>(low mass)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAX</td>
<td>$p^\uparrow + \bar{p}$</td>
<td>collider</td>
<td>14</td>
<td>0.1 \pm 0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>NICA</td>
<td>$p^\uparrow + \bar{p}$</td>
<td>collider</td>
<td>20</td>
<td>0.1 \pm 0.8</td>
<td>0.001</td>
</tr>
<tr>
<td>RHIC</td>
<td>$p^\uparrow + p$</td>
<td>250</td>
<td>22</td>
<td>0.2 \pm 0.5</td>
<td>2</td>
</tr>
<tr>
<td>Int. Target 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Target 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1027</td>
<td>$p^\uparrow + p$</td>
<td>120</td>
<td>15</td>
<td>0.35 \pm 0.85</td>
<td>400-1000</td>
</tr>
<tr>
<td>P1039</td>
<td>$p^\uparrow + p$</td>
<td>120</td>
<td>15</td>
<td>0.1 \pm 0.3</td>
<td>400-1000</td>
</tr>
</tbody>
</table>

Relevant parameters for the future proposed polarized DY experiments

Asymmetry up to 10% predicted in DY for the target rapidity region ($x_F < 0$)

L. Massacrier – SPIN 2014 Conference

M. Anselmo, ECT*, Feb. 2013
(Courtesy U. d’Alessio)
Physics Highlights: AFTER@LHC

pp and pA @ $\sqrt{s_{NN}} = 115$ GeV

- **Linearly polarized gluons:** h_1^{Lg}
 - "Boers-Mulder" effect: correlation between the parton k_T and its spin (in unpolarized nucleon)
 - Scalar and pseudo-scalar quarkonia – χ_{c0}, χ_{b0}, η_c, η_b

- Low-p_T C-even quarkonium production is a good probe of gluon Transverse Momentum Dependent (TMD) pdfs
- Low-p_T scalar and pseudo-scalar quarkonia are affected differently by the linearly polarized gluons in unpolarized nucleons
- With AFTER@LHC
 - Boost – better access to the low-p_T C-even quarkonia
 - η_c (LHCb 1409.3612), (η_b), back-to-back $J/\psi + \gamma$, $J/\psi + J/\psi$
ψ signal simulation with full background

\[J/\psi / \psi(2S) \rightarrow \mu^+ \mu^- \]

- In more backward or forward rapidity regions, the signal to background ratio increases