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@ The world most famous
eTe™ collider running
1989-1995(LEP-I),
1996-2000(LEP-I1).

@ Energy ranges
~ 91 GeV(LEP-I) and
91-208 GeV(LEP-II).

@ Host of four big
experiments: OPAL,
ALEPH, DELPHI, L3.
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@ Collaboration of more
than 300 people.

@ Advanced
multipurpose detector
with almost 47 solid
angle coverage.

@ Collected more than
400k eTe™ hadronic
annihilation events at
Vs =91.2 GeV at
LEP-II.
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e eTe™ — Z°% — hadrons is perfect to study QCD effects
@ Particular interest: QCD colour coherence can be studied with
4-jet events.

o Provides better understanding of QCD.
o Validates well established and new Monte Carlo models.
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Existing models are based on parton showers 1 — 2 (p; — pip;),
dipole showers 2 — 3 (pjpk — pipjpk) and QCD antenna 2 — 3
(PiPk — pipPjPK)- In combination with ordering variables it gives:

Model

Ordering variable

Meaning
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:, Qf =

no angular ordering, our “straw man”

(pj + px)?, and

Mie = (pi + pr)? = (pi + pj + pk)? is used.
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Measurements and Predictions

Measurements:

o LEP-II data sample with /s = 91.2 GeV, calibration samples
from LEP-II/LEP-II.

@ Pythiab and Herwig MC samples passed through detector
simulation to unfold the data to particle level.

@ 4-jet events are reconstructed with Durham algorithm
(y*73 > 0.045) from tracks and calorimeter clusters. For
details of selection see backup and Ref. [2].

Predictions:

@ Several MC samples of 5 x 108 events to extract model
predictions. Parameters of every model were tuned to describe
the same (independent) LEP data in the best way.

@ 4-jet events are reconstructed in the same way as in data.

6

21



The event topologies resulting from four-jet events

Observables:

@ (14 the emission angle of 4

014
the soft fourth jet with , 37L1

respect to the first jet
@ 0% = Or4 — O>3, the .
. . . 6*
difference in opening angles %—1
e p= M?/MZ, the ratio of
the invariant

masses-squared of the jets M
at the end of the clustering N
process, ordered such that ‘7

M2 < M?,.

o CM®) ~ E401)2035 Evis/ (E1E3613), the 2-point double ratio
with the total visible energy Eis in the event. 6234 denotes
the angle between the softest jet and the (23) jet pair and
analogously for 61 23.
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a) Angle between 1st and 4th jet, 6, HERWIG++
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1Upcoming revision of Ref. [2]

b) Angle between 1st and 4th jet, 6, VINCIA, PYTHIA 8
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a) Difference in opening angles, 0*, HERWIG++
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b) Difference in opening angles, ¢*, VINCIA, PYTHIA 8
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c) Asymmetry for 6, HERWIG++
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d) Asymmetry for 6%, VINC1A, PYTHIA 8
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a) Ratio of jet masses, p, HERWIG++
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c) Asymmetry for p, HERWIG++
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a) 2-point double ratio, C3'/”), HERWIG++
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c) Asymmetry for 02“/ 5), HERWIG++
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@ Presented measurements of distributions
ete™ — Z% — 4 — jets sensitive to QCD colour coherence,
the radiation model and the ordering parameter. The study
has validated the most widely used Monte Carlo models for
the QCD 4-jet final states.

@ It was found that:

o The HERWIG++ with a g3;, model provides the least
satisfactory description of the data.

e The PYTHIA 8 and both variants of VINCIA Provide the best
description of the data.
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Backup slides
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Event selection

Charged tracks are required to have transverse momentum relative
to the beam axis larger than 0.15 GeV, and photons to have
energies larger than 0.10 GeV (0.25 GeV) in the barrel (endcap)
region of the electromagnetic calorimeter. The selection of
hadronic annihilation events is the same as described in Ref. [5].
Briefly, a minimum of five charged tracks is required, and a
containment condition | cos 6| < 0.90 is applied, where 6t is the
polar angle of the thrust axis [6, 7] with respect to the beam axis,
calculated using all accepted charged tracks and electromagnetic
clusters.
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Event reconstruction

Jets were reconstructed with Durham algorithm. For this algorithm
the measure of distance between objects is

Vi = 2min(E,-2, Ej2)(1 — cosbjj)/s.

Here E; and E; are the energies and 0j; is the angle between
reconstruction objects i and j and the center-of-mass
energy-squared is denoted by s. In the event the with minimal
distance are sequentially merged.

To remove clusters matched to tracks. the energy-flow
algorithm [3, 4] was applied.
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The OPAL data is analysed in “Data Preservation” mode. It
implies some specific features:

@ Absence of regular collaboration structure: groups,
spokesperson, administration.

@ Absence of dedicated manpower, support and infrastructure.

@ Permanent Editorial Board, that should be contacted before
making an analysis.
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The used figures originate from the Refs. [2, 8, 9, 10].
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