Measurements of non-photonic electrons in STAR

Olga Rusňáková for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

EPS-HEP, Vienna, 22-29 July, 2015
Outline

• Motivation

• Non-photonic electron (NPE) analysis method

• NPE results:
 → p+p at 200 GeV
 → Au+Au – nuclear modification factor R_{AA} at 200 GeV
 – elliptic flow v_2 in Au+Au at 39, 62.4, and 200 GeV
Heavy-ion collisions

- Heavy-ion collisions:
 - → hot and dense nuclear matter formation - Quark-Gluon Plasma
 - → hot and cold nuclear matter effects

- p+p collisions:
 - → baseline

- Medium effects quantified by nuclear modification factor:
 - R_{dA} – cold nuclear matter effects
 - R_{AA} – hot nuclear matter effects

$$R_{AA} = \frac{1}{<N_{\text{coll}}>} \ast \frac{dN_{AA}/dy}{dN_{pp}/dy}$$
Non-photonic electrons

Semi-leptonic decay of bottom and charm hadrons → non-photonic electrons.
\[b \rightarrow e^\pm + \text{anything} (10.86\%) \]
\[c \rightarrow e^\pm + \text{anything} (9.6\%) \]

- **Heavy quarks:**
 - large masses
 - early production
 - p+p collisions - test of the validity of the pQCD

- **Heavy ion collisions:**
 - energy loss
 (nuclear modification factor \(R_{AA} \))
 - thermalization (elliptic flow \(v_2 \))
STAR detector at RHIC

Solenoidal Tracker At RHIC: \(-1 < \eta < 1, \ 0 < \phi < 2\pi\)

- **Time Projection Chamber (TPC)** – tracking, particle identification, momentum

- **Time of Flight detector (ToF)** – particle identification at low \(p_T\) region

- **Barrel Electromagnetic Calorimeter (BEMC)** – electron identification at high \(p_T\) region, triggering (High Tower triggers)

- **Barrel Shower Maximum Detector (BSMD)** – electron identification at high \(p_T\)
STAR detector at RHIC

Solenoidal Tracker At RHIC: \(-1 < \eta < 1, 0 < \phi < 2\pi\)

Electron identification with only TPC at low \(p_T\) region is difficult.
TPC and TOF together are great tool to distinguish electrons and hadrons at low p_T region ($p_T < 2\text{GeV/c}$).
STAR detector at RHIC

Solenoidal Tracker At RHIC: $-1 < \eta < 1$, $0 < \phi < 2\pi$

TPC and BEMC together are used for electron identification at high p_T region ($p_T > 2\text{GeV}/c$).

![Graph of E/p vs. E for Au+Au collisions at 200 GeV](image)
Analysis method

\[NPE = N_{\text{Inclusive}} \times \text{purity}_{\text{Inclusive}} - \frac{N_{\text{Photonic}}}{\epsilon_{\text{Photonic}}} \]

- **Inclusive electrons** – identification with TPC, TOF, BEMC.

- **Main background** - photonic electrons

 Dalitz decay: \(\pi^0 \rightarrow \gamma + e^+ + e^- \) (BR: \(\sim 1.2\% \))

 Gamma conversions: \(\gamma \rightarrow e^+ + e^- \)

 → identified via small \(e^+e^- \) invariant mass

 → statistically reconstructed

 → corrected for reconstruction efficiency via simulation
NPE in p+p collisions at $\sqrt{s}=200\text{GeV}$

- **p+p at 200GeV data** (year 2009 and year 2012)

- Spectrum is reconstructed at wide p_T range.

- Results are compared with FONLL pQCD. (Fixed Order plus Next-to-Leading Logarithms).

Data to FONLL ratio

- Results compared with FONLL calculation.
- Results are consistent with FONLL and with other RHIC NPE results.

NPE in Au+Au collisions at $\sqrt{s_{NN}} = 200\text{GeV}$

- Au+Au at 200GeV (year 2010 data):
 - suppression at high p_T compared with FONLL calculations
Strong suppression is observed at high p_T. Strong suppression is similar as for D^0 mesons and light hadrons.

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dy}{dN_{pp}/dy}$$

Elliptic flow in Au+Au collisions

- Elliptic flow v_2 describes the collective evolution of the system.

- Initial geometry asymmetry \rightarrow final momentum anisotropy

- NPE v_2 measurement serves as a proxy for heavy quark v_2.

\[
\frac{dN}{d\varphi} \propto \left(1 + 2 \sum_n \nu_n \cos[n(\varphi - \psi_n)] \right)
\]

\[
\nu_n = \langle \cos n(\varphi - \psi_n) \rangle
\]
NPE elliptic flow in Au+Au collisions at \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)

- Results obtained using 2-particle and 4-particle correlations.
- With different contributions from fluctuations and non-flow contribution, \(v_2^2 \) gives upper and \(v_2^4 \) gives lower limit on elliptic flow.
- We observed finite \(v_2^2 \) and \(v_2^4 \) for \(p_T > 0.5 \text{ GeV/c} \) at \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \).

arXiv:1405.6348 [nucl-ex]

07/23/2015
Olga Rusňáková, EPS-HEP 2015
NPE elliptic flow in Au+Au collisions at $\sqrt{s_{NN}} = 39$ and 62.4 GeV

- v_2^2 Beam Energy Scan results

- Energy dependance of the strength of heavy quarks interaction with hot and dense medium.

- Inclusive charged hadron v_2 approximatelly independent of beam energy.

- NPE v_2^2 at 39 and 62.4 GeV is consistent with zero.

arXiv:1405.6348 [nucl-ex]
Gluon radiation scenario alone fails to explain large NPE suppression at high p_T.

Finite elliptic flow together with large suppression at high p_T at $\sqrt{s_{NN}} = 200$ GeV indicates that heavy quarks interact strongly with the surrounding partonic medium.

It's challenging for model calculations to describe the suppression and v_2 simultaneously.
Heavy flavor tracker (HFT)

- HFT allows measurement of $\text{B} \rightarrow \text{e}$ and $\text{D} \rightarrow \text{e}$ spectrum separately in Au+Au.
Conclusions

- Measurement of the NPE spectrum in p+p collisions at $\sqrt{s}=200$ GeV was extended to the low p_T region.

- We observed strong suppression of NPE in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

- NPE v_2 at $\sqrt{s_{NN}}=200$ GeV in Au+Au collisions: finite v_2 at low p_T together with strong suppression at high p_T indicates a strong charm-medium interaction.

- NPE v_2 at $\sqrt{s_{NN}}=39$ and 62.4 GeV in Au+Au collisions: v_2 consistent with zero.

- The new HFT detector will allow measurement of $B \to e$ and $D \to e$ spectra separately.
Thank you!