$\varepsilon^{\prime} / \varepsilon$ from the lattice and some of its implications

Based on RBC-UKQCD arXiv:1505.07683
And manuscript in prep with Lehner And Lunghi

Amarjit Soni, HET-BNL (adlersoni@ gmail.com) EPS 2015; 07/ 24/ 15

Vienna

outline

- Long, long time coming: Obstacles aglore!
- Reminder of essential basics
- Method of choice: Direct K=> $\pi \pi$ a la Lellouch-Luscher
- $1^{\text {st }}$ results
- Few implications
- Outlook

The RBC\&UKQCDcollaborations

BNL and RBRC	Luchang Jin	PlymouthUniversity
	Bob Mawhinney	
Tomomi Ishikawa	Greg McGlynn	Nicolas Garron
Taku Izubuchi	David Murphy	
Chulwoo Jung	Daiqian Zhang (UniversityofSouthampton
Christoph Lehner		
Meifeng Lin, Taichi	UniversityofConnecticut	
Kawanai		Jonathan Flynn
>Christopher Kelly	Tom Blum	Tadeusz Janowski
Shigemi Ohta (KEK)		Andreas Juettner
Amarjit Soni	EdinburghUniversity	Andrew Lawson Edwin
Sergey Syritsyn		Lizarazo Antonin
	Peter Boyle	Portelli Chris Sachrajda
CERN	Luigi Del Debbio	Francesco Sanfilippo
	Julien Frison	Matthew Spraggs Tobias
Marina Marinkovic	Richard Kenway Ava	Tsang
	Khamseh Brian	
ColumbiaUniversity	Pendleton Oliver	
	Witzel Azusa	
Ziyuan Bai	Yamaguchi	YorkUniversity(Toronto)
Norman Christ Xu Feng	Lattice eps, EPS 07/24/ 2015;	Renwick Hudspith

M OTHER of all (lattice) calculations to date: A Personal Perspective

- ~1/3 of a century
- 9 PhD thesis: Terry Draper (UCLA), George Hockney(UCLA), Cristian Calin (Columbia=CU), Jack Laiho(Princeton), Sam Li(CU), M atthew Lightman(CU), Elaine Goode(Southampton), Qi Liu(CU), Daiqian Zhang(CU)
- Post-docs \& such: Tom Blum (U Conn), M atthew Wingate (Cambridge), Chris Dawson(google), Chris Kelly (RIKEN-BNL-RC)

I. Wilson Fermions with Bernard ~82 See also Martinelli et al [WF] Giusti et al [WF] Sharpe et al [Stag F]	Lattice $\chi \mathbf{S}$ is a pre-requisite for this physics Off-shoot B-physics important observables identified \& studied=> evolved into UT	
II (a) DWF with Blum ~'95 II(b) DWF with RBC[with Blum, Christ and M awhinney became "flagship" project of RBC] ~'97.	LOxPT; Quenched approx.[QA] Same QA is disastrous for this physics [Golterman-Pallante] pathologies; NPR of full $\Delta S=1$ accomplished for the $1^{\text {st }}$ time used since then.	CRAY @ NERSC QCDSP ~1 TF
III. DWF with full QCD RBC, ~'02	Used LOxPT + full QCD Large chiral corrections	QCDSP ~ 1TF
IV. DWF with full QCD RBC +UKQCD, ~'06	Direct K $\Rightarrow \pi \pi \pi$, [Lellouch-Luscher method] @ threshold	QCDOC ~ 10 TF
V. DWF with full QCD, RBC + UKQCD ~'11	Direct $K \Rightarrow r \pi$, [Lellouch-Luscher method]; physical kinematics	BG/Q ~100TF@BNL; RBRC;ANL; Edinburgh
Vi. Same ~now	Same	Seeking new hardware ~1.5PF;NERSC;ANL;BNL

$\Delta \mathrm{S}=1 \mathrm{H}_{\mathrm{w}}$

WC GeNo

$$
H_{W}=\frac{G_{F}}{\sqrt{2}} V_{u s}^{*} V_{u d} \sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}(\mu) \text {. }
$$

Bucchalla, Bunos, Lantemlaciner cinchimid

$$
\tau=-V_{t s}^{*} V_{t d} \mid V_{u s}^{*} V_{u d} .
$$

$$
\begin{aligned}
& \text { Thel }\left\{\begin{array}{l}
Q_{1}=\left(\bar{s}_{\alpha} d_{\alpha}\right)_{L}\left(\bar{u}_{\beta} u_{\beta}\right)_{L}, \\
Q_{2}=\left(\bar{s}_{\alpha} d_{\beta}\right)_{L}\left(\bar{u}_{\beta} u_{\alpha}\right)_{L},
\end{array}\right. \\
& \begin{aligned}
Q_{7} & =\frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{L} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{R}, \\
Q_{8} & =\frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{L} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{R},
\end{aligned} \\
& Q_{9}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{L} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{L}, \\
& \left\{\begin{array}{l}
Q_{3}=\left(\bar{s}_{\alpha} d_{\alpha}\right)_{L} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{L}, \\
Q_{4}=\left(\bar{s}_{\alpha} d_{\beta}\right)_{L} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{L}, \\
Q_{5}=\left(\bar{s}_{\alpha} d_{\alpha}\right)_{L} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{R}, \\
Q_{6}=\left(\bar{s}_{\alpha} d_{\beta}\right)_{L} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{R},
\end{array}\right.
\end{aligned}
$$ $m_{n} \rightarrow 0$

Ensemble

- 32^{3} x64 Mobius DWF ensemble with IDSDR gauge action at $\beta=1.75$. Coarse lattice spacing ($\mathrm{a}^{-1}=1.378(7) \mathrm{GeV}$) but large, $(4.6 \mathrm{fm})^{3}$ box.
- Using Mobius params $(b+c)=32 / 12$ and $\mathrm{L}=12$ obtain same explicit $\chi \mathrm{SB}$ as the $\mathrm{L}_{\mathrm{s}}=32$ Shamir DWF + IDSDR ens. used for $\Delta \mathrm{I}=3 / 2$ but at reduced cost.
- Utilized USQCD 512-node BG/Q machine at BNL, the DOE "Mira" BG/Q machines at ANL and the STFC BG/Q "DiRAC" machines at Edinburgh, UK.
- Performed 216 independent measurements (4 MDTU sep.).
- Cost is $\sim 1 \mathrm{BG} / \mathrm{Q}$ rack-day per complete measurement (4 configs generated +1 set of contractions).
- G-parity BCs in 3 spatial directions results in close matching of kaon and $\pi \pi$ energies:

TABLE I. Contributions to A_{0} from the ten continuum, $\overline{\mathrm{MS}}$ operators $Q_{i}(\mu)$, for $\mu=1.53 \mathrm{GeV}$. Two statistical errors are shown: one from the lattice matrix element (left) and one from the lattice to $\overline{\mathrm{MS}}$ conversion (right).

TABLE II. Representative, fractional systematic errors for the individual operator contributions to $\operatorname{Re}\left(A_{0}\right)$ and $\operatorname{Im}\left(A_{0}\right)$.

For A2 error is now completely dominated by perturbation theory calculation of Wilson coeffs

Results for ε^{\prime}

- Using $\operatorname{Re}\left(A_{\gamma}\right)$ and $\operatorname{Re}(A)$) from experiment $\operatorname{Im}\left(\mathrm{A}_{0}\right)$ and $\operatorname{Im}\left(\mathrm{A}_{2}\right)$ and the phase shifts,

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)= & \operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA}_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
=\begin{array}{cl}
1.38(5.15)(4.43) \times 10^{-4}, & \text { (this work) } \\
& 16.6(2.3) \times 10^{-4}
\end{array} & \text { (experiment) }
\end{aligned}
$$

Proof of the pudding: underlying method is systematically improvable

- BK in full QCD with DWF '07 error O(7\%)
- ~2012 many discretizations, WA error 0(1-2\%)
- KI3 O(1/ 2\%), A2 O(10\%) , fB’s O(few \%) , BB’s O(few\%)........
- $\mathbf{0}$ doubt that A0, $\mathbf{A 2}$ for ε^{\prime} will not go that way for quite sometime to come........to $\sim 10 \%$ total
After that EM \& isospin effects will have to be ascertained quantitatively.

Results from Global Fits to Data (CKM Fitter Group)

A lesson from history (I)

"A special search at Dubna was carried out by E. Okonov and his group. They did not find a single $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$event among 600 decays into charged particles [12] (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."
-Lev Okun, "The Vacuum as Seen from M oscow"

=> Precision! Precision! Precision! Need of the day.
 => Also, since we are searching for small effects, using different probes may be valuable

- In B's, in conjunction with experiments, Lattice WME helped in attaining a milestone in our understanding of CP
- Analogously can lattice sharpen tests now via K's?
- Since m_{K} is ~ 10 times lighter, the non-perturbative effects are much more difficult and quantitatively a lot bigger, can the lattice meet this long-standing challenge and render K-tests become precise?

Promising developments on the lattice in K-decays.........RBC-UKQCD
 - In the process of taming ε ' also

- Long-distance (non-local) effects; most interesting \& important in $\Delta m K$ because of extreme sensitivity to chiral structure of Heff see Beall, Bander + AS, PRL ‘82 $\mathbf{\delta 0}$ (40\%) Brod \& Gorban

See N.Christ et al PRD'13; PRL'14... Look forward to
$\Delta \mathrm{mK}$ from lattice as a useful observable for constraining NP.

- εK LD $\delta 0(7 \%)$.....N.Christ talk @ LAT' 15 \& many more
- K+ $\Rightarrow \pi$ v v...... $\delta 0$ (few\%).......Xu Feng talk @ lat'15
- K $\Rightarrow \pi$ e e..........A. Lawson talk @ Lat'15; [A.Portelli]; C. Sachrajda @ LAT'14
- => Pathways to K-UT

A dream for some

Blucher, Winstein and Yamanaka '09

A Faster way, inn the offing?

More on K-decays=>rare K's Taku Yamamako lekmag 20

 - KL $\Rightarrow \pi 0$ v $\stackrel{\text { "..gold-plated, i. i.e Theory super-clean: A } \alpha \mathrm{mt2} \mathrm{Xn}_{n} \text { व }}{ }$

- Observe: The above expt is exceedingly
challenging (esp for precision) and expensive.
- Assertion: Once the (exptal) community realizes we mean business by reducing errors on Im AO to around ~20\% they will get the message loud and clear: It is much more cost effective to invest in better lattice calculation(s) of eps'

Lattion E^{\prime} / ϵ or SUT \equiv The UT.

LLS in paep
Lattice eps',EPS 07/24/ 2015; A. Soni

Sketch of an emerying K-UT

POSSIBLE KUT CIRCA 2020

Lattice eps',EPS 07/24/ 2015; A. Soni

NO
unique s, n! use NA62 $\mathrm{K}+$
$10 / 2$

A new observable on the horizon
 OP Conseniony obsensalle
 $\epsilon_{H_{1}}^{\prime} \mid \epsilon_{x_{k}}$

See letmer, lunghif A.s in paep

Summary + outlook

- Significant progress in $\mathrm{K}=>\pi \pi$ with physical masses and kinematics
- Presented $1^{\text {st }}$ computation of $\varepsilon^{\prime} / \varepsilon$ with controlled errors:
-1.38(5.15)(4.43) $\times 10^{-4} ; 16.6(2.3) \times 10^{-4} \mathrm{expt}^{2}$
- Trying hard to reduce syst and stat errors
- Fall ' 15 detailed paper, hopefully with some improvements
- New (faster) hardware later this year or'16=> should have significantly reduced errors in 1-3 years
- Expect errors < $\sim 10 \%$ in ~ 5 years; thence EM \& isospin needs tackling
- Experimentalists ought to think of improved measurements of ε^{\prime}, error now $\sim 15 \%$
- Perhaps easier than precise measurement of $\mathrm{KL}=\lambda \pi \mathrm{vv}$

xtras

EXAMPLES

For now, signal is rather weak; a lot more statistics is needed

Power of the lattice: Only method to systematically reduce the NP error!

$A B$-inito Cocorat $B_{k}=\frac{\left\langle k \|\left(\bar{s} \gamma_{u}\right)\right)^{2} \mid k}{8 / 3 S_{k}^{2} m^{2} k}$

Status before lattice 2014

FLAG [Aoki et al., '13-14]
GamonlLATIY

FLAf 2013

$$
N_{f}=2+1: \quad \hat{B}_{K}=0.7661(99),
$$

10 ops are not linearly independent

$$
\begin{aligned}
& Q_{4}=-Q_{1}+Q_{2}+Q_{3}, \\
& Q_{9}=\frac{3}{2} Q_{1}-\frac{1}{2} Q_{3}, \\
& Q_{10}=\frac{1}{2} Q_{1}+Q_{2}-\frac{1}{2} Q_{3} .
\end{aligned}
$$

Se Golterman o Pallante 101; 04 ; Aukinet d (RBC) 106 Extremely serious quench pathology

- Most important for Q6 as it LR $\Rightarrow>(S+P)(S-P)$; AND it makes the most important contribution to ε^{\prime}
Source of problem is that H_{-}eff for $\Delta S=1$ has operators such as Q6 with Quark content
(sd) ($\bar{u} u) \rightarrow$ quark loop form weak interaction

Quench approx
$Q_{18,1}$ gets unplysical contribution of θ_{8} (8,8)

\Longrightarrow

- ShPT approach to $K \rightarrow \pi \pi$ faces severe difficulties.
- RBC/UKQCD studying physical $\pi \pi$ final states.
- DWF on coarse lattices and large volumes: $4 \rightarrow 5 \mathrm{fm}$?
- Vranas auxiliary determinant (Renfrew talk on Wed.)

$$
\begin{aligned}
& \text { LARGE SYSTEMATIC } \\
& \text { EnOS DuE }
\end{aligned}
$$

Mass depends of ReA2, A0

	a^{-1} [G	$n_{\pi} \mathrm{Me}$	$m_{K}[\mathrm{MeV}$	$\mathrm{A}_{2}\left[10^{-8} \mathrm{GeV}\right.$	$A_{0}\left[10^{-8} \mathrm{GeV}\right.$	$\frac{\text { ReA }}{} \mathrm{Re}_{0}$	notes
6^{3} Iwasaki	1.73(3)	$422(7)$	878(15)	4.911(31)	$45(10)$	9.1(2.1)	threshold calculation
24^{3} Iwasaki	1.73(3)	329 (6)	662(11)	2.668 (14)	32.1(4.6)	12.0(1.7)	threshold calculation
IDSDR	1.36(1)	142.9(1.1)	511.3(3.9)	$1.388(5)(26)$	-	-	physical kinematics
Experiment	-	135-140	494-498	1.479(4)	$33.2(2)$	22.45 (6)	

TABLE I: Summary of simulation parameters and results obtained on three DWF ensembles.

Due to the cancellation, 3/2 amplitude decreases significantly as the
 pion mass is lowered towardsits physical value

