ε'/ε from the lattice and some of its implications

Based on RBC-UKQCD arXiv:1505.07683 And manuscript in prep with Lehner And Lunghi Amarjit Soni, HET-BNL

(adlersoni@gmail.com)

EPS 2015; 07/24/15

<u>Vienna</u>

Lattice eps',EPS 07/24/ 2015; A. Soni

outline

- Long, long time coming: Obstacles aglore!
- Reminder of essential basics
- Method of choice: Direct K=> $\pi\pi$ a la Lellouch-Luscher
- 1st results
- Few implications
- Outlook

The RBC&UKQCDcollaborations

Plymouth University BNL and RBRC Luchang Jin **Bob Mawhinney** Nicolas Garron Tomomi Ishikawa Greg McGlynn Taku Izubuchi David Murphy Chulwoo Jung **Daiqian Zhang** *University of South ampton* Christoph Lehner Meifeng Lin, Taichi *University of Connecticut* Jonathan Flynn Kawanai Tadeusz Janowski **♦**Christopher Kelly Tom Blum Andreas Juettner Shigemi Ohta (KEK) Andrew Lawson Edwin Amarjit Soni Edinburgh University Lizarazo Antonin Sergey Syritsyn Portelli Chris Sachrajda Peter Boyle **CERN** Francesco Sanfilippo Luigi Del Debbio Matthew Spraggs Tobias Julien Frison Marina Marinkovic Tsang Richard Kenway Ava Khamseh Brian Columbia University Pendleton Oliver Witzel Azusa *YorkUniversity(Toronto)* Ziyuan Bai Yamaguchi Norman Christ

Lattice eps', EPS 07/24/ 2015; A. Soni

Xu Feng

MOTHER of all (lattice) calculations to date: A Personal Perspective

- ~1/3 of a century
- 9 PhD thesis: Terry Draper (UCLA), George Hockney(UCLA), Cristian Calin (Columbia=CU), Jack Laiho(Princeton), Sam Li(CU), Matthew Lightman(CU), Elaine Goode(Southampton), Qi Liu(CU), Daiqian Zhang(CU)
- Post-docs & such: Tom Blum (U Conn), Matthew Wingate (Cambridge), Chris Dawson(google), Chris Kelly (RIKEN-BNL-RC)

I. Wilson Fermions with Bernard ~'82 See also Martinelli et al [WF] Giusti et al [WF] Sharpe et al [Stag F]	Lattice χ S is a pre-requisite for this physics Off-shoot B-physics important observables identified & studied=> evolved into UT		
II (a) DWF with Blum ~ '95 II(b) DWF with RBC[with Blum, Christ and Mawhinney became "flagship" project of RBC] ~'97.	LOχPT; Quenched approx.[QA] Same QA is disastrous for this physics [Golterman-Pallante] pathologies; NPR of full ΔS=1 accomplished for the 1st time used since then.	CRAY @ NERSC QCDSP ~ 1 TF	
III. DWF with full QCD RBC, ~ '02	Used LOχPT + full QCD Large chiral corrections	QCDSP ~ 1TF	
IV. DWF with full QCD RBC + UKQCD, ~ '06	Direct K=> $\pi\pi$, [Lellouch-Luscher method] @ threshold	QCDOC ~ 10 TF	
V. DWF with full QCD, RBC + UKQCD ~ '11	Direct K=>ππ, [Lellouch-Luscher method]; physical kinematics	BG/Q ~ 100TF@BNL; RBRC;ANL; Edinburgh	
Vi. Same ~now	Same	Seeking new hardware ~1.5PF;NERSC;ANL;BNL	

$$\Delta S=1 H_W$$

 $H_{W} = \frac{G_{F}}{\sqrt{2}}V_{us}^{*}V_{ud}\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right]Q_{i}(\mu).$

$$\tau = -V_{ts}^* V_{td}/V_{us}^* V_{ud}.$$

$$Q_1 = (\bar{s}_{\alpha} d_{\alpha})_L (\bar{u}_{\beta} u_{\beta})_L,$$

$$Q_2 = (\bar{s}_{\alpha} d_{\beta})_L (\bar{u}_{\beta} u_{\alpha})_L,$$

$$Q_3 = (\bar{s}_{\alpha} d_{\alpha})_L \sum_{q=u,d,s} (\bar{q}_{\beta} q_{\beta})_L,$$

$$Q_4 = (\bar{s}_{\alpha} d_{\beta})_L \sum_{q=u,d,s} (\bar{q}_{\beta} q_{\alpha})_L$$

$$Q_5 = (\bar{s}_{\alpha} d_{\alpha})_L \sum_{q=u,d,s} (\bar{q}_{\beta} q_{\beta})_R$$

$$Q_6 = (\bar{s}_{\alpha} d_{\beta})_L \sum_{\alpha} (\bar{q}_{\beta} q_{\alpha})_R,$$

$$Q_7 = \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_L \sum_{q=u,d,s} e_q (\bar{q}_{\beta} q_{\beta})_R,$$

$$Q_8 = \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_L \sum_{q=u,d,s} e_q (\bar{q}_{\beta} q_{\alpha})_R$$

$$Q_9 = \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_L \sum_{q=u,d,s} e_q (\bar{q}_{\beta} q_{\beta})_L$$

$$Q_{10} = \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_L \sum_{q=u,d,s} e_q (\bar{q}_{\beta} q_{\alpha})_L,$$

 $\begin{array}{lll} & & & \\ &$ 5 Md 5 Mg 4

5 Mg 4

5 Mg 4

FIG. 1. Examples of the four types of diagram contributing to the $\Delta I = 1/2$, $K \to \pi\pi$ decay. Lines labeled ℓ or s represent light or strange quarks. Unlabeled lines are light quarks.

Ensemble

- 323x64 Mobius DWF ensemble with IDSDR gauge action at β =1.75. Coarse lattice spacing $(a^{-1}=1.378(7) \text{ GeV})$ but large, $(4.6 \text{ fm})^3 \text{ box}$.
- Using Mobius params (b+c)=32/12 and L=12 obtain same explicit χSB as the L_s=32 Shamir DWF + IDSDR ens. used for ΔI =3/2 but at reduced cost.
- Utilized USQCD 512-node BG/Q machine at BNL, the DOE "Mira" BG/Q machines at ANL and the STFC BG/Q "DiRAC" machines at Edinburgh, UK.
- Performed 216 independent measurements (4 MDTU sep.).
- Cost is ~1 BG/Q rack-day per complete measurement (4 configs generated + 1 set of contractions).
- G-parity BCs in 3 spatial directions results in close matching of kaon and $\pi\pi$ energies:

$$m_{K} = 490.6(2.4) \text{ MeV}$$

$$E_{\pi\pi}(I=2) = 573.0(2.9) \text{ MeV}$$

$$E_{\pi} = 274.6(1.4) \text{ MeV}$$
 $(m_{\pi} = 143.1(2.0) \text{ MeV})$

TABLE I. Contributions to A_0 from the ten continuum, $\overline{\text{MS}}$ operators $Q_i(\mu)$, for $\mu = 1.53$ GeV. Two statistical errors are shown: one from the lattice matrix element (left) and one from the lattice to $\overline{\text{MS}}$ conversion (right).

Description	Error	Description	Error
Finite lattice spacing	8%	Finite volume	7%
Wilson coefficients	12%	Excited states	$\leq 5\%$
Parametric errors	5%	Operator renormalization	15%
Unphysical kinematics	$\leq 3\%$	Lellouch-Lüscher factor	11%
Total (added in quadra	ature)		26%

TABLE II. Representative, fractional systematic errors for the individual operator contributions to $Re(A_0)$ and $Im(A_0)$.

$$Re(A_0) = 4.66(1.00)(1.21) \times 10^{-7} \text{ GeV}$$

 $Im(A_0) = -1.90(1.23)(1.04) \times 10^{-11} \text{ GeV}$

3.32×10 bev expt

$$ReA_2 = 1.381(46)_{stat}(258)_{syst}10^{-8} \text{ GeV},$$
 $Re(A_2) = 1.58$ $Im(A_2) = -6.54(46)_{stat}(120)_{syst}10^{-13} \text{ GeV}.$ $Im(A_2) = -6.54$

 $Re(A_2) = 1.50(4)_{stat}(14)_{syst} \times 10^{-8} \text{ GeV};$ $Im(A_2) = -6.99(20)_{stat}(84)_{syst} \times 10^{-13} \text{ GeV}.$

a= 1.728 Gev 483 x96x24 Continuelon = 2.3586ev 643 x 128 x 12

2012 PRD a-1=1 364 GeV 323×64×32

 $\text{Re}(\epsilon'/\epsilon)_{\text{FWP}} = -(6.6 \pm 1.0) \times 10^{-4}$.

For A2 error is now completely dominated by perturbation theory calculation of Wilson coeffs.

Results for ε'

• Using Re(A) and Re(A) from experiment $Im(A_0)$ and $Im(A_2)$ and the phase shifts,

and our lattice values for

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right]\right\}$$

$$= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(this work)}$$

$$16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

Bearing in mind the largish errors in this first calculation, we interpret that our result agrees with experiment at $\sim 2\sigma$ level

Proof of the pudding: underlying method is systematically improvable

- BK in full QCD with DWF '07 error O(7%)
- ~2012 many discretizations, WA error O(1-2%)
- KI3 O(1/2%), A2 O(10%), fB's O(few %), BB's O(few%).......

 0 doubt that A0, A2 for ε' will not go that way for quite sometime to come......to ~10% total
 After that EM & isospin effects will have to be ascertained quantitatively.

Results from Global Fits to Data (CKMFitter Group)

Great progress on ϕ_3 or γ (first from B factories and now in the last two years from LHCb (several new results at ICHEP2014). These measure the phase of V_{ub}

Looks good (except for an issue with a tive ups 15) s 07/24

ICHEP2014: Similar results from UTFIT (D. Derkach) as well from G. Eigen et al.

But a 10-20% NP amplitude in B_d mixing is perfectly compatible with all current data.

16

A lesson from history (I)

"A special search at Dubna was carried out by E. Okonov and his group. They did not find a single $K_1 \rightarrow \pi^+ \pi^-$ event among 600 decays into charged particles [12] (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."

-Lev Okun, "The Vacuum as Seen from Moscow"

A failure of imagination? Lack of patience?

1964: BF= 2×10^{-3} Character Som, FITCH Chomin, FITCH Chomin, FITCH Chomin, FITCH LAY LAY LAY LATTICE eps', EPS 07/24/2015; A. Soni

- => Precision! Precision! Precision! Need of the day.
- => Also, since we are searching for small effects, using different probes may be valuable

- In B's, in conjunction with experiments, Lattice WME helped in attaining a milestone in our understanding of CP
- Analogously can lattice sharpen tests now via K's?
- Since m_K is ~10 times lighter, the non-perturbative effects are much more difficult and quantitatively a lot bigger, can the lattice meet this long-standing challenge and render K-tests become precise?

Promising developments on the lattice in K-decays.....RBC-UKQCD

- In the process of taming ϵ' also
- Long-distance (non-local) effects; most interesting & important in ΔmK because of extreme sensitivity to chiral structure of Heff see Beall, Bander + AS, PRL '82δO(40%) Brod & Gorban

See N.Christ et al PRD'13; PRL'14... Look forward to

AmK from lattice as a useful observable for constraining NP.

- εK LDδO(7%).....N.Christ talk @LAT'15 & many more
- K+ => $\pi v v$ δO (few%)......Xu Feng talk @ lat'15
- K => π e e......A. Lawson talk @ Lat'15; [A.Portelli]; C. Sachrajda @LAT'14
- => Pathways to K-UT

A dream for some

Blucher, Winstein and Yamanaka '09

A Faster way

attice eps',EPS 07/24/ 2015; A. Soni

More on K-decays=>rare K's

Taku Jamanako etking 94

• KL => π0 v v ...Gold-plated, i.e Theory super-clean: A α mt2 X η Theory super-clean: A α mt

- Observe: The above expt is exceedingly
- challenging (esp for precision) and expensive.
- Assertion: Once the (exptal) community realizes we mean business by reducing errors on Im A0 to around ~ 20% they will get the message loud and clear: It is much more cost effective to invest in better lattice calculation(s) of eps'

Lattie E/E & SUT = The UT.

Sketch of an emerging K-UT

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \begin{cases} (8.64 \pm 0.60) \times 10^{-11} \text{ SM} \\ (17.3^{+11.5}_{-10.5}) \times 10^{-11} \text{ E949} \end{cases}$$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right)_{K} = \begin{cases} (16.7 \pm 1.6) \times 10^{-4} \\ (1.36 \pm 5.21_{\mathrm{stat}} \pm 4.49_{\mathrm{syst}}) \times 10^{-4} \end{cases}$$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right)_{K} = \begin{cases} (16.7 \pm 1.6) \times 10^{-4} \\ (1.36 \pm 5.21_{\mathrm{stat}} \pm 4.49_{\mathrm{syst}}) \times 10^{-4} \end{cases}$$

LLS 115

BNL, 3/22/11; A. Soni

Legendary American Philosopher

The Future

Yogi Berra: "Its difficult to make predictions, especially about the future"

New York Yankees (1964, 1984-1985)
 New York Mets (1972-1975)

Career highlights and awards

- 15× All-Star selection (1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960,
- 13× World Series champion (1947, 1949, 1950, 1951, 1952, 1953, 1956, 1958, 1961, 1962, 1969, 1977,
- 3× AL MVP (1951, 1954, 1955)
- New York Yankees #8 retired
- Major League Baseball All-Century Team

Member of the National

Baseball Hall of Fame

Induction | 1972

Vote | 85.61% (second ballor)

POSSIBLE KUT CIRCA 2020

ILLUSTRATION

A new observable on the horizon

Summary + outlook

- Significant progress in K=> ππ with physical masses and kinematics
- Presented 1st computation of ε'/ε with controlled errors:
- $^{\bullet}_{1.38(5.15)(4.43)\times10^{-4}}$ $^{\circ}_{1}$ $^{1}_{6}$ $^{\circ}_{6}$ $^{\circ}_{6}$ $^{\circ}_{2}$ $^{\circ}_{3}$ $^{\circ}_{3}$ $^{\circ}_{6}$ $^{\circ}_{7}$ $^{\circ}_{7}$
- Trying hard to reduce syst and stat errors
- Fall '15 detailed paper, hopefully with some improvements
- New (faster) hardware later this year or'16=> should have significantly reduced errors in 1-3 years
- Expect errors < ~ 10% in ~5 years; thence EM & isospin needs tackling
- Experimentalists ought to think of improved measurements of ε', error now ~15%
- Perhaps easier than precise measurement of KL=>πνν

xtras

For now, signal is rather weak; a lot more statistics is needed

Power of the lattice: Only method to systematically reduce the NP error!

AB-Initio Calculate BK = KK 15 Km/2/KC, 8/35 km/K

Status before lattice 2014

FLAG [Aoki et al., '13-14]

Garnon LAT/4

FLAG 2013

$$N_f = 2 + 1$$

$$N_f = 2 + 1:$$
 $\hat{B}_K = 0.7661(99),$ ~ 1.3

10 ops are not linearly independent

$$Q_4 = -Q_1 + Q_2 + Q_3$$
,

$$Q_9 = \frac{3}{2}Q_1 - \frac{1}{2}Q_3,$$

$$Q_{10} = \frac{1}{2}Q_1 + Q_2 - \frac{1}{2}Q_3$$
.

QA; CHPT

PRD NOZ

TABLE XLIX. Our final values for physical quantities using one-loop full QCD extrapolations to the physical kaon mass (choice 2) and a value of μ =2.13 GeV for the matching between the lattice and continuum. The errors for our calculation are statistical only.

Quantity	Experiment	This calculation (statistical errors only)
Re A ₀ (GeV)	3.33×10^{-7}	$(2.96\pm0.17)\times10^{-7}$
$Re A_2(GeV)$	1.50×10^{-8}	$(1.172\pm0.053)\times10^{-8}$
ω^{-1}	22.2	(25.3 ± 1.8)
$\operatorname{Re}(\epsilon'/\epsilon)$	$(15.3\pm2.6)\times10^{-4}(NA 48)$	$(-4.0\pm2.3)\times10^{-4}$
	$(20.7\pm2.8)\times10^{-4}(KTEV)$	
		

C ALSO CPARES

Extremely serious quench patholgy

• Most important for Q6 as it LR=> (S+P)(S-P); AND it makes the most important contribution to ϵ'

Source of problem is that H_eff for $\Delta S=1$ has operators such as Q6 with

Quark content

(u) quank loop from weak interaction

Je gets unphysical contribution to 18

Full (Sam)Shu Li, PhD thesis, Conclusion Columbia '08

Quantity	This analysis	Quenched	Experiment
ReA_0 (GeV)	$4.5(11)(53) \times 10^{-7}$	$2.96(17) \times 10^{-7}$	3.33×10^{-7}
ReA_2 (GeV)	$8.57(99)(300) \times 10^{-9}$	$1.172(53) \times 10^{-8}$	1.50×10^{-8}
$Im A_0$ (GeV)	$-6.5(18)(77) \times 10^{-11}$	$-2.35(40) \times 10^{-11}$	
$Im A_2$ (GeV)	$-7.9(16)(39) \times 10^{-13}$	$-1.264(72) \times 10^{-12}$	
$1/\omega$	50(13)(62)	25.3(1.8)	22.2
$\operatorname{Re}(\epsilon'/\epsilon)$	$7.6(68)(256) \times 10^{-4}$	$-4.0(2.3) \times 10^{-4}$	1.65×10^{-3}

- ChPT approach to $K \to \pi \pi$ faces severe difficulties.
- RBC/UKQCD studying physical $\pi \pi$ final states.
- DWF on coarse lattices and large volumes: $4 \rightarrow 5$ fm?
- Vranas auxiliary determinant (Renfrew talk on Wed.)

N. Christ @LAT08

Mass depends of ReA2, A0

P	R	L
2	0	13

(a^{-1} [GeV]	$m_{\pi} [{ m MeV}]$	$m_K[{\rm MeV}]$	$\mathrm{Re}A_{2}\left[10^{\text{-}8}\mathrm{GeV}\right]$	$\mathrm{Re}A_0[10^{-8}\mathrm{GeV}]$	$\frac{\text{Re}A_0}{\text{Re}A_2}$	notes
16^3 Iwasaki	1.73(3)	422(7)	878(15)	4.911(31)	45(10)	9.1(2.1)	threshold calculation
24 ³ Iwasaki	1.73(3)	329(6)	662(11)	2.668(14)	32.1(4.6)	12.0(1.7)	threshold calculation
IDSDR	1.36(1)	142.9(1.1)	511.3(3.9)	1.38(5)(26)		-	physical kinematics
Experiment	-	135 - 140	494 - 498	1.479(4)	33.2(2)	22.45(6)	

TABLE I: Summary of simulation parameters and results obtained on three DWF ensembles.

Due to the cancellation, 3/2 amplitude decreases significantly as the pion mass is lowered towards its physical value