Semi-Inclusive Jet Measurements in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Jan Rusňák for the STAR Collaboration

Nuclear Physics Institute ASCR
Motivation for Jet Studies

Jets: collimated sprays of hadrons created by fragmentation and hadronization of hard-scattered partons

Elementary collisions: fundamental test of pQCD

Heavy-ion collisions: energy loss mechanism in Quark Gluon Plasma (QGP)

\[
\frac{d\sigma_{Jet}}{dE_T} \quad p+p \times <N_{bin}> \quad \text{Suppression?} \quad \text{Energy shift?}
\]

\[
E_T \quad R_{AA} \quad \text{Au+Au}
\]
Central Au+Au collisions: suppression of away side jet - "jet quenching"

Better understanding of jet quenching => fully reconstructed jets

intermediate trigger momentum:

Central Au+Au collisions: suppression of away side jet - "jet quenching"
d+Au: no suppression -> medium effect

high trigger momentum:

Central Au+Au: away-side "jet" suppression of the order of charged hadrons suppression
Relativistic Heavy Ion Collider (RHIC)

Unique machine: polarized $p+p$ collisions, wide range of species, $\sqrt{s_{NN}}$ from 5.5 to 510 GeV, asymmetric collision...

Data-set:
- TPC tracks only
- Year 2011 Au+Au $\sqrt{s_{NN}} = 200$GeV

Solenoidal Tracker at RHIC (STAR)

Time Projection Chamber
Barrel ElectroMagnetic Calorimeter

full azimuthal coverage
pseudo-rapidity coverage: $-1<\eta<1$
TPC: low-momentum tracking (0.1 GeV/c)
Jet Reconstruction in Heavy Ion Collisions

LHC:
- Jets dominate over the background
 → Clear jet identification (at high p_T)

RHIC:
- Background fluctuations comparable to signal → Jet identification is extremely challenging task
- Signal identification on statistical basis
Jet Reconstruction Algorithms

- infrared and collinear safe reconstruction algorithms

- clustering algorithms:
 - k_T - starts clustering from low-p_T particles; irregular jet shapes
 - anti-k_T - starts clustering from high-p_T particles; cone-like jet shapes

key steps:
- jet reconstruction: different resolution parameters R
- correction for background energy

 \[
 \rho = \text{med} \left\{ \frac{p_{T,i}}{A_i} \right\} \quad A_i \ldots \text{jet area}
 \]

 \[
 p_{T,\text{reco}} = p_T - A_{\text{jet}} \times \rho
 \]
Background Fluctuations

Simulated jets embed into real events to determine effect of background fluctuations on jet momentum.

\[\delta p_T = p_{T,\text{reco}} - p_{T,\text{emb}} = p_T - A_{\text{jet}} \times \rho - p_{T,\text{emb}} \]

- \(\delta p_T \) depends little on embedded particle momentum.
- \(\delta p_T \) used to unfold the spectrum.
Semi-inclusive Recoil Jets

Observable: Recoil jets per trigger

\[
\frac{1}{N_{\text{trig}}^h} \frac{dN_{\text{jet}}}{dp_{T,jet}} = \frac{1}{d\sigma^{AA\to h+jet+X}} \frac{d\sigma^{AA\to h+jet+X}}{dp_{T,jet}}
\]

Measured: Calculable in NLO pQCD

Trigger: high-\(p_T\) hadron \(\rightarrow\) selects hard event

Recoil side: use all jet candidates within \(+/- 45^\circ\)

\(\rightarrow\) no fragmentation bias
Analysis in STAR:

- Recoil jet azimuth: $|\Delta \phi - \pi| < \pi/4$
- No rejection of jet candidates on jet-by-jet basis
- Jet measurement is collinear-safe with low infrared cutoff (0.2 GeV/c)
- **Background subtraction:**

 Mixed event technique

ALICE:

- **Background subtraction:**

 two different trigger track (TT) p_T ranges

\[
\Delta_{\text{recoil}} = \Delta_{\text{TT signal}} - \Delta_{\text{TT reference}}
\]

arXiv:1506.03984
Mixed Event Generation for Jets

Pick one random track per real event → add to mixed event

Mix only similar centrality, Ψ_{EP}, z-vertex position
Raw Charged Recoil Jet Spectrum: Central

- Excellent description of low p_T SE spectrum with ME
- Normalization region varied systematically
- Significant jet signal at $p_{T\text{reco}} = p_T - \rho A > 10$ GeV/c

Combinatorial jet background statistically described by mixed event technique
Raw Charged Recoil Jet Spectrum: Reference

- Reference spectrum: peripheral collisions
- Much less combinatorial background compared to most central data
- Excellent signal/background ratio down to 3 GeV/c
Peripheral Preliminary Reference vs. PYTHIA

- Background-subtracted spectrum in 60%-80% Au+Au in comparison with smeared PYTHIA
- PYTHIA shape in good agreement with 60%-80% data
- small suppression in yield (data/PYTHIA)
Recoil Jet Energy Loss

Central

- Significant suppression (central/smeared PYTHIA) over whole p_T range → energy loss
- Very similar shape over 4 orders of magnitude
Unfolding Examples

Central (Levy prior example)

- \(SVD \) and Bayesian unfolding used
- Systematic variation of: Prior \(\rightarrow \) \{Levy function \((T, n)\), PYTHIA\}, regularization parameter, +/-5% efficiency variation, ME normalization, \(\delta p_T \) distribution (single particle embedding, PYTHIA jet embedding)
- Check based on backfolding \(\chi^2 \)

Peripheral (PYTHIA prior example)

- \(Au+Au, 0\%-10\% \)
- \(\sqrt{s_{NN}}=200\text{GeV} \)
- \(9.0<p_{T\text{, trig}}<30.0\text{GeV/c} \)
- \(R=0.3, \text{anti-}kT \)

\[\text{STAR Preliminary} \]
Comparison Central-Peripheral: I_{CP}

- Significant suppression (~0.2) at $p_T > 10$ GeV/c
- I_{CP} close to 1 at low p_T
- Larger suppression wrt LHC energies
 - but: different trigger range, background subtraction, $\Delta \phi$ cut,...
- Similar shift in Δp_T (-8+/−2 GeV/c for ALICE)

Errors show combined systematics of unfolding and track reconstruction
Summary

- First measurement of hadron triggered recoil jet spectra at RHIC
- New mixed event technique can reproduce combinatorial jet background
- Low p_T jets accessible, and no bias on recoil jet side
- Direct comparison to pQCD calculations possible
- Suppression (~0.2) is larger compared to LHC energies

Outlook

- Full jet reconstruction @ 200 GeV+ more statistics soon
- Low energy (Au+Au @ 62.4 GeV) jet reconstruction
Large Angle Scattering off the QGP?

Discrete scattering centers or effectively continuous medium?

Scattering probability can give us important information about coupling:
- strongly/weakly coupled QGP
- quasiparticles?

"Weak" "Strong"
No additional broadening observed in Pb+Pb compared to p+p so far.
\[\Delta \phi, \ 60\% - 80\%, \ R = 0.3 \]

- \[\Delta \phi = \phi_{\text{trig}} - \phi_{\text{jet}} \]
- Projections for different recoil jet \(p_T \)
- Gaussian + 0\(^{th}\) order polynomial
- Fit results do not depend on ME normalization
- Almost no pedestal for 60\%-80%
$\Delta \Phi, \, 0\%-10\%, \, R = 0.3$

- $\Delta \phi = \phi_{\text{trig}} - \phi_{\text{jet}}$
- Projections for different recoil jet p_T
- Gaussian + 0^{th} order polynomial
- Fit results do not depend on ME normalization
- Some pedestal for 0%-10%
ΔΦ, at low p_T

- Significant difference at $5 < p_T \cdot pA < 8$ GeV/c
 → Flow?
 → Φ dependent normalization needed?
 → Background from multiple interactions?
 → More studies needed!
• combinatorial background reduced by a cut on leading hadron p_T

• induces bias (however jet can still contain many soft constituents)
• Measured spectra corrected via Bayesian unfolding

• Jet energy scale resolution: roughly 5% (mainly due to track. eff. uncertainty)

• R_{AA}: Work in progress: further systematic uncertainties, pp baseline improvement
Inclusive Charged Jet Spectra

- Measured spectra corrected via Bayesian unfolding
- Jet energy scale resolution: roughly 5% (mainly due to track. eff. uncertainty)
- \(R_{AA} \): Work in progress: further systematic uncertainties, pp baseline improvement
Jet Imbalance A_J Measurements

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

- di-jet momentum asymmetry
- signal of medium-induced jet modification

ATLAS: $p_{T,1}$, $p_{T,2}$

Phys. Rev. Lett. 105 252303
A_J Calculation in STAR

Calculate A_J with constituent HIGH $p_{T,\text{cut}} > 2$ GeV/c

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_T = p_{T,\text{rec}} - \rho \times A$$
Rerun jet-finding algorithm anti-k$_T$ on these events ...

\[p_T^{\text{Lead}} > 20 \text{ GeV/c} \]
\[p_T^{\text{SubLead}} > 10 \text{ GeV/c} \]
\[\Delta\Phi_{\text{Lead,SubLead}} > 2/3 \pi \]

Calculate A_J with constituent HIGH $p_T^{\text{cut}} > 2$ GeV/c

\[
A_J = \left(\frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \right), \quad p_T = p_T^{\text{rec}} - \rho \times A
\]
A_J Calculation in STAR

- $p_T^{\text{Lead}} > 20 \text{ GeV/c}$
- $p_T^{\text{SubLead}} > 10 \text{ GeV/c}$
- $\Delta \Phi_{\text{Lead,SubLead}} > 2/3 \pi$

Calculate A_J with constituent HIGH $p_T^{\text{cut}} > 2 \text{ GeV/c}$

Calculate "matched" A_J with constituent LOW $p_T^{\text{cut}} > 0.2 \text{ GeV/c}$

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_T = p_T^{\text{rec}} - \rho \times A$$
$A_J : R=0.2$

Anti-k_T $R=0.2$, $p_{T,1}>16$ GeV & $p_{T,2}>8$ GeV

- $p_{T}^{cut}>2$ GeV/c
- $p_{T}^{cut}>0.2$ GeV/c
- Au+Au HT Matched $p_{T}^{cut}>0.2$ GeV/c
- Au+Au HT $p_{T}^{cut}>2$ GeV/c

Au+Au 0-20%

Anti-K_T $R=0.2$

STAR Preliminary

p-value $<10^{-10}$ (stat. error only)

p-value $<10^{-4}$ (stat. error only)

$R=0.2$: Matched Au+Au ≠ matched p+p
$A_J : R=0.4$

Anti-k_T $R=0.4$, $p_{T,1}>20$ GeV & $p_{T,2}>10$ GeV with $p_T^{\text{cut}}>2$ GeV/c

- pp HT ⊕ AuAu MB $p_T^{\text{cut}}>2$ GeV/c
- pp HT ⊕ AuAu MB Matched $p_T^{\text{cut}}>0.2$ GeV/c
- AuAu HT $p_T^{\text{cut}}>2$ GeV/c
- AuAu HT Matched $p_T^{\text{cut}}>0.2$ GeV/c

Au+Au 0-20%
Anti-K_T $R=0.4$

p-value<10^{-5} (stat. error only)
p-value~0.8 (stat. error only)

STAR Preliminary

R=0.4: Matched Au+Au = matched p+p

=> Energy recovered for $R=0.4$ with low p_T particles