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Dark Photons

= massive Vector with kinetic mixing to the photon
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Dark Photons
a simple model - an active fielo
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Dark Photons -
bigger picture

Cold Dark Matter

Log,omx|[eV]
Dark Photon becomes «» Decays to
a dark matter candidate eptons (and
nadrons)

(Fig. from Jaeckel 2013)



Can we make
Dark Photon Dark Matter?

Checklist:

* |s stable on cosmological timescales
* has the correct relic density

* |arge scale adiabatic fluctuations

* preferably detectable



Decay of sub-MeV Dark Photons

Stability:

1. Make it light, below 2me. Prevents V' — e*e™ decay
2. Have small k « 1, to slow down V' — 3~
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Pospelov, Ritz, Voloshin 2008
(see also Redondo, Postma 2008)

=> Vectors can be have lifetime greater than the Universe



Thermal abundance

Abundance, early Universe production:

1. thermal production through Compton scattering, e-pair annihilation

T ~ m, /T

>

For values of the mixing angle that are not already challenged by
experiment for my = 1eV, such rates are sub-Hubble.



Matter effects
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Coupling of V to EM
current inside a medium



Matter effects

R —shell V
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Coupling of V to EM => effective mixing angle
current inside a medium ms,
R = R X
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Matter effects

m?
R =K X

my, —1Ilp, L

Rellr ocw, ~aT? (T »m,)  => effective mixing angle
suppressed at high T
=> production shuts oft

Rellr r(w, Tr1.1) = ms, => Resonance may appear

Resonance dominates the production for light vectors at T' ~ m. but
is not efficient to reach a dark matter abundance in ROl my < 1eV

see Redondo, Postma 2008 & Arias et al 2012
[for mV > 2 me see also Fradette, Pospelov, JP, Ritz 2014]



Dark Photon Dark Matter

Abundance, early Universe production:

1. thermal production X
2. resonant production X
3. non-thermal production:

e.g. field can be generated during intlation

Quantum fluctuations yield abundance “for free”

Oy ~ 0.3, ] 2V Hint Graham Mardon. Raiendran 2015
~ U. ranam, araon, najenaran
v 1keV \ 1012 GeV |

with adiabatic fluctuations on large scales
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Dark Photon Dark Matter

Detection:

1. Small mass ~ keV means large number density npym = ppym/mpwm
2. photo-ionization cross sections of ordinary photons
can be huge, say, 107 bn

Those compensating factors make up for tiny coupling & « 107"
that renders V stable on cosmological timescale!

=> absorption of ~keV vectors can be looked for in electron band
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Dark Photon Absorption

(including medium effects)
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Effective mixing angle Related to the polarization
inside the medium tensor 11,,,, of the photon
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Dark Photon Absorption

(including medium effects)

' . . _ 7 N1, L
AMDItUdE: Mis vy, = o s (g Ol ()

62 P 1Y
Rate: Iry = o f Az k2, cre, (pil [T (x), 2 (0)]Ipid

T, = _“izl’,L ImIlr 1 Absorption rate given by the
| “ imaginary part of the polarization
functions

An, Pospelov, JP, 2013
An, Pospelov, JP, Ritz 2014
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Absorption In Xenon

Compute absorption rate

from refractive index

(via tabulated atomic X-ray data,
using Kronig-Kramers relations)

Iy = w?(1 —n2,,)

refr

17, = (w® — ¢°)(1 — niyg)

refr

INn the non-relativistic limit:
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Absorption in LXe

lonization-only S2 analyses amply suited for Dark Photon search.

Drifting charges in an electric field is SEEaas

a powerful amplification mechanism

Eion(Xe) = 12eV

Sensitivity to Dark Photons of my > 12eV

Xel+V - Xell + e

Absorption of, say, my = 300eV
can produce ~25 electrons.
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Absorption in XENON10

lonization-only signal S2 pushes sensitivity for sub-keV signals

Despite uncertainties in 0403 = )
. . . - X X i
electron yield, calibration, 099 I
£ 0.30¢ . s :
and background we can | xS
0.25! " X X% X028
. ' (\B] . X
set a robust limit: S 3 <
= 0.207 9 K %
' | X
£ 0.15! g
1. count all events “ 010l
19 8 16 32 64 e-
2. do not subtract backgrounds g5 _

. C . 051 2 | I5 10 20
3. infer limit irrespective of nuclear recoil energy E,,  [keV]

electron yleld XENON10 collaboration, 2011

16



Absorption in XENON100

S1and S2
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predicted Dark Photon
scintillation signal (S1)



kinetic mixing K

10~ 12 o
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Direct Detection Limits
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=> direct detection
has sensitivity to

keV-scale “super-WIMPs”
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E2d¢/dE, (keV /cm? [sec/sr)

Astrophysical Limits - |
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heavier than ~ few x 100 keV
[gamma ray limits quantitatively

identical to previous estimates]
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Astrophysical Limits Il - Stars

Particles with mass < O(keV) are kinematically accessible
and can be produced. E.g. axions

© i — e

elc.

Stars supported by radiation pressure (active stars):

=> (Gravitational potential energy becomes more negative (tighter
bound)

=> average Kinetic energy increases, star becomes hotter (negative
| 1
heat capacity) (g, » = _§<Egm>



Stellar V-production
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V L T,L
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Transverse Resonance Longitudinal Resonance
mi = Rellp = w? mi = Rell, = womi, /w?
2 2
< W = wp

drprod N 22 Vw2 —m?, y k*m3-w?  longitudinal,
dw ew/T(r) — 1 |0wp(r)/or] | K2ms, transverse,

longitudinal: An, Pospelov, JP 2013
transverse: Redondo 2008



Dark Photon Dark Matter

10~ 12¢ .‘
Position of stellar limits :
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‘Simplified Models” of
super-WIMP absorption

(in contrast to WIMP-nucleon scattering)

(pseudo)scalar  gsS¥Y, gpPirysi,
(pseudo)vector gvaMMDV gaA DY,
tensor gL o, -

It the DM mass is not protected by some symmetry (like for
dark photons or axions), loop corrections induce a mass shift

Am ~ gAyy  => ¢, <107 for m~100eV

As we have |ust seen, such couplings in the "naturalness regime”
are being probed by direct detection!
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summary

Light (keV and below), very weekly interacting particles (“super-
WIMPs") are probed efficiently through stellar cooling or related
astrophysical processes.

Dark Photons (hidden photons, A, ...) can be super-WIMPs and
they can be dark matter through non-thermally generated
abundance.

Liquid scintillator direct detection experiments allow to test for Dark
Photon Dark Matter for vector masses > 10 eV.

Thank you.
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