Direct Detection of Dark Photon Dark Matter

Josef Pradler

Vienna Institute of High Energy Physics, Austrian Academy of Sciences

collaborators: Haipeng An, Maxim Pospelov, Adam Ritz

July 24, 2015 EPS-HEP 2015

Dark Photons

= massive Vector with kinetic mixing to the photon

Two ways to think about
$$-rac{\kappa}{2}F_{\mu
u}V^{\mu
u}$$

Keep the mixing:

 $eA_{\mu}J^{\mu}_{EM}$

Photon-Dark Photon mixing manifest

Or diagonalize kinetic term:

$$eA'_{\mu}J^{\mu}_{EM}-\kappa eV'_{\mu}J^{\mu}_{EM}$$

Ordinary matter has millicharge under new force

Dark Photons

a simple model - an active field

(g-2) explanation of the muon is now excluded from CERN SPS Kaon facility through $\pi^0 \rightarrow \gamma e^+ e^-$

Dark Photons bigger picture

(Fig. from Jaeckel 2013)

Can we make Dark Photon Dark Matter?

Checklist:

- is stable on cosmological timescales
- has the correct relic density
- large scale adiabatic fluctuations
- preferably detectable

Decay of sub-MeV Dark Photons

Stability:

- 1. Make it light, below $2m_e$. Prevents $V \rightarrow e^+e^-$ decay
- 2. Have small $\kappa \ll 1$, to slow down $V \to 3\gamma$

$$\Gamma_{V \to 3\gamma} = \frac{17\kappa^2 \alpha^4}{2^7 3^6 5^3 \pi^3} \frac{m_V^9}{m_e^8}$$

 $V \sim \gamma$

Pospelov, Ritz, Voloshin 2008 (see also Redondo, Postma 2008)

=> Vectors can be have lifetime greater than the Universe

Thermal abundance

Abundance, early Universe production:

1. thermal production through Compton scattering, e-pair annihilation

For values of the mixing angle that are not already challenged by experiment for $m_V \gtrsim 1 \,\mathrm{eV}$, such rates are sub-Hubble.

Matter effects

Coupling of V to EM current inside a medium

Matter effects

Coupling of V to EM current inside a medium

=> effective mixing angle $\kappa_{T,L} = \kappa \times \frac{m_V^2}{|m_V^2 - \Pi_{T,L}|}$

Matter effects

$$\kappa_{T,L} = \kappa \times \frac{m_V^2}{|m_V^2 - \Pi_{T,L}|}$$

$$\operatorname{Re} \Pi_{T,L} \propto \omega_p^2 \sim \alpha T^2 \quad (T \gg m_e)$$
$$\operatorname{Re} \Pi_{T,L} (\omega, T_{r,T,L}) = m_V^2$$

=> effective mixing angle
suppressed at high T
=> production shuts off

=> Resonance may appear

Resonance dominates the production for light vectors at $T \sim m_e$ but is not efficient to reach a dark matter abundance in ROI $m_V \gtrsim 1 \,\mathrm{eV}$

> see Redondo, Postma 2008 & Arias et al 2012 [for mV > 2 me see also Fradette, Pospelov, JP, Ritz 2014]

Dark Photon Dark Matter

Abundance, early Universe production:

- 1. thermal production X
- 2. resonant production X
- 3. non-thermal production:

e.g. field can be generated during inflation

Quantum fluctuations yield abundance "for free"

$$\Omega_V \sim 0.3 \sqrt{\frac{m_V}{1\,{\rm keV}}} \left(\frac{H_{\rm inf}}{10^{12}\,{\rm GeV}}\right)$$

Graham, Mardon, Rajendran 2015

with adiabatic fluctuations on large scales

Dark Photon Dark Matter

Detection:

- 1. Small mass ~ keV means large number density $n_{\rm DM} = \rho_{\rm DM}/m_{\rm DM}$
- photo-ionization cross sections of ordinary photons can be huge, say, 10⁷ bn

Those compensating factors make up for tiny coupling $\kappa \ll 10^{-10}$ that renders V stable on cosmological timescale!

=> absorption of ~keV vectors can be looked for in electron band

Dark Photon Absorption

(including medium effects)

Amplitude:
$$\mathcal{M}_{i \to f+V_{T,L}} = -\frac{e\kappa m_V^2}{m_V^2 - \Pi_{T,L}(q)} \langle p_f | J_{em}^{\mu}(0) | p_i \rangle \varepsilon_{\mu}^{T,L}(q)$$

Rate:
$$\Gamma_{T,L} = \frac{e^2}{2\omega} \int d^4x \, e^{iq \cdot x} \kappa_{T,L}^2 \varepsilon_{\mu}^* \varepsilon_{\nu} \langle p_i | [J_{em}^{\mu}(x), J_{em}^{\nu}(0)] | p_i \rangle$$

Effective mixing angle Related to the pole inside the medium in the medium in the medium

$$\kappa_{T,L}^2 = \kappa^2 \times \frac{m_V^4}{|m_V^2 - \Pi_{T,L}|^2}$$

arization ohoton

$$\Pi^{\mu\nu} = \Pi_T \sum_{i=1,2} \epsilon_i^{T\mu} \epsilon_i^{T\nu} + \Pi_L \epsilon^{L\mu} \epsilon^{L\nu}$$

Dark Photon Absorption

(including medium effects)

Amplitude:
$$\mathcal{M}_{i \to f+V_{T,L}} = -\frac{e\kappa m_V^2}{m_V^2 - \Pi_{T,L}(q)} \langle p_f | J_{em}^{\mu}(0) | p_i \rangle \varepsilon_{\mu}^{T,L}(q)$$

Rate:
$$\Gamma_{T,L} = \frac{e^2}{2\omega} \int d^4x \, e^{iq \cdot x} \kappa_{T,L}^2 \varepsilon_{\mu}^* \varepsilon_{\nu} \langle p_i | [J_{em}^{\mu}(x), J_{em}^{\nu}(0)] | p_i \rangle$$

$$\Gamma_{T,L} = -\frac{\kappa_{T,L}^2 \operatorname{Im} \Pi_{T,L}}{\omega}$$

Absorption rate given by the imaginary part of the polarization functions

An, Pospelov, JP, 2013 An, Pospelov, JP, Ritz 2014

Absorption in Xenon

Compute absorption rate from refractive index (via tabulated atomic X-ray data, using Kronig-Kramers relations)

$$\Pi_T = \omega^2 (1 - n_{\text{refr}}^2)$$
$$\Pi_L = (\omega^2 - \bar{q}^2)(1 - n_{\text{refr}}^2)$$

In the non-relativistic limit:

$$|\vec{q}| \ll \omega : \Pi_L = \Pi_T = \Pi$$

Absorption in LXe

Ionization-only S2 analyses amply suited for Dark Photon search.

Drifting charges in an electric field is a powerful amplification mechanism

 $E_{\rm ion}({\rm Xe}) = 12 \, {\rm eV}$

Sensitivity to Dark Photons of $m_V > 12 \,\mathrm{eV}$

 $Xe I + V \rightarrow Xe II + e^{-}$

Absorption of, say, $m_V = 300 \,\mathrm{eV}$ can produce ~25 electrons.

Absorption in XENON10

Ionization-only signal S2 pushes sensitivity for sub-keV signals

Despite uncertainties in electron yield, calibration, and background we can set a robust limit:

- 1. count all events
- 2. do not subtract backgrounds
- 3. infer limit *irrespective* of electron yield

XENON10 collaboration, 2011

Absorption in XENON100

S1 and S2

predicted Dark Photon scintillation signal (S1)

Direct Detection Limits

Astrophysical Limits - I

gamma rays and CMB limits exclude Dark Photon Dark Matter heavier than ~ few x 100 keV

[gamma ray limits quantitatively identical to previous estimates]

10³

m_V (eV)

10⁴

XENON10 XENON100

10¹

 10^{-16}

XMASS diffuse γ

CMB

10²

10⁶

10⁵

Astrophysical Limits II - Stars

Particles with mass < O(keV) are kinematically accessible and can be produced. E.g. axions

Stars supported by radiation pressure (active stars):

=> Gravitational potential energy becomes more negative (tighter bound)

=> average kinetic energy increases, star becomes hotter (negative heat capacity) $\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm grav} \rangle$

Stellar V-production

Transverse Resonance

$$m_V^2 = \operatorname{Re} \Pi_T = \omega_p^2$$

Longitudinal Resonance

$$m_V^2 = \operatorname{Re} \Pi_L = \omega_p^2 m_V^2 / \omega^2$$
$$\Leftrightarrow \omega^2 = \omega_p^2$$

$$\frac{d\Gamma^{\text{prod}}}{d\omega} \simeq \left(\frac{2r^2}{e^{\omega/T(r)} - 1} \frac{\sqrt{\omega^2 - m_V^2}}{|\partial \omega_P^2(r)/\partial r|}\right)_{r=r_{\text{res}}} \times \begin{cases} \kappa^2 m_V^2 \omega^2 & \text{longitudinal,} \\ \kappa^2 m_V^4 & \text{transverse,} \end{cases}$$

longitudinal: An, Pospelov, JP 2013 transverse: Redondo 2008

Dark Photon Dark Matter

Position of stellar limits understood from:

Sun $\omega_P(r=0) \simeq 300 \,\mathrm{eV},$ HB $\omega_P(r=0) \sim 2.6 \,\mathrm{keV},$ RG $\omega_P(r=0) \sim 200 \,\mathrm{keV}.$

Astrophysical limits are strong, but direct detection can probe unchartered territory

=> improvement potential if experimental e-backgrounds are better understood.

An, Pospelov, JP, Ritz PLB 2015

"Simplified Models" of super-WIMP absorption

(in contrast to WIMP-nucleon scattering)

(pseudo)scalar (pseudo)vector tensor

$$g_{S}S\bar{\psi}\psi, \quad g_{P}P\bar{\psi}\gamma_{5}\psi, \\ g_{V}V_{\mu}\bar{\psi}\gamma_{\mu}\psi, \quad g_{A}\mathcal{A}_{\mu}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi, \\ g_{T}T_{\mu\nu}\bar{\psi}\sigma_{\mu\nu}\psi, \quad \cdots$$

If the DM mass is not protected by some symmetry (like for dark photons or axions), loop corrections induce a mass shift

$$\Delta m \sim g_i \Lambda_{\rm UV} \implies g_i \lesssim 10^{-10} \text{ for } m \sim 100 \,\mathrm{eV}$$

As we have just seen, such couplings in the "naturalness regime" are being probed by direct detection!

Summary

Light (keV and below), very weekly interacting particles ("super-WIMPs") are probed efficiently through stellar cooling or related astrophysical processes.

Dark Photons (hidden photons, A', ...) can be super-WIMPs and they can be dark matter through non-thermally generated abundance.

Liquid scintillator direct detection experiments allow to test for Dark Photon Dark Matter for vector masses > 10 eV.

Thank you.