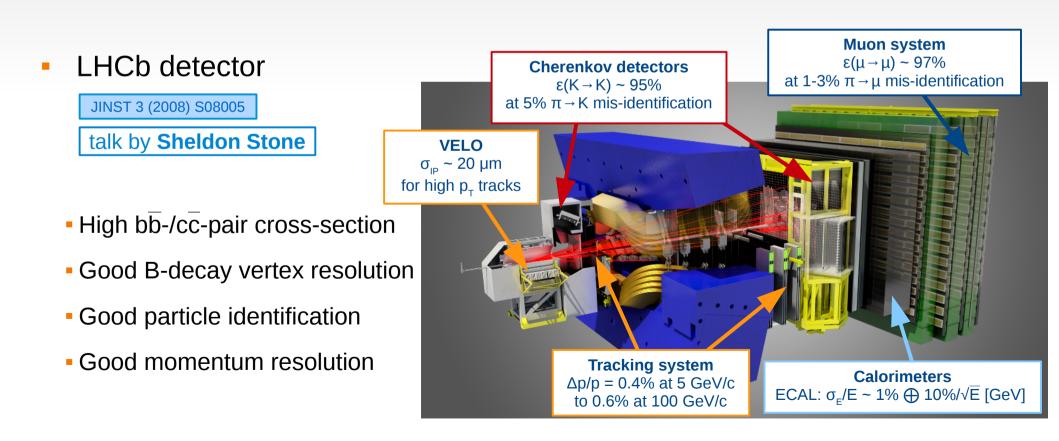
Heavy flavor production in the forward acceptance at the LHC

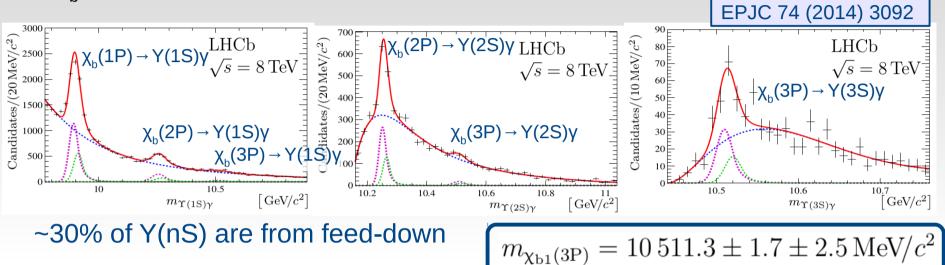
Polyakov Ivan ITEP

(on behalf of the LHCb collaboration)

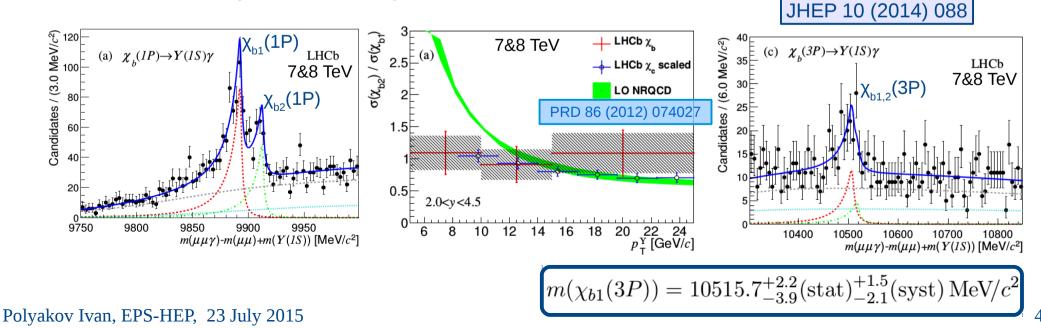


Introduction

- Heavy flavor and quarkonia production is a puzzle of QCD
- Relative role of competing production mechanisms is poorly understood
- LHCb provides unique possibility to probe forward region of 2<y<5 and to imply a stronger tests on theory

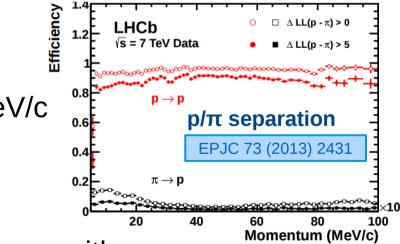

Overview

List of analyses on heavy flavor production during last year


•
$$\chi_b(nP) \rightarrow Y(n'S)\gamma$$
 at $\sqrt{s}=7\&8 \text{ TeV}$
• $\eta_c(1S)$ at $\sqrt{s}=7\&8 \text{ TeV}$
• B_c^+ differential at $\sqrt{s}=8 \text{ TeV}$
• Y in pPb at $\sqrt{s}_{NN}=5 \text{ TeV}$ talk by Marco Meissner
(HIP, right now)
!New! • Exclusive Y at $\sqrt{s}=7\&8 \text{ TeV}$ talk by Paolo Gandini
(QCD&HP, today)
!New! • J/ ψ at $\sqrt{s}=13 \text{ TeV}$ talk by Ilya Komarov
(QCD&HP, 24 July)

$\chi_{bJ}(nP)$ production

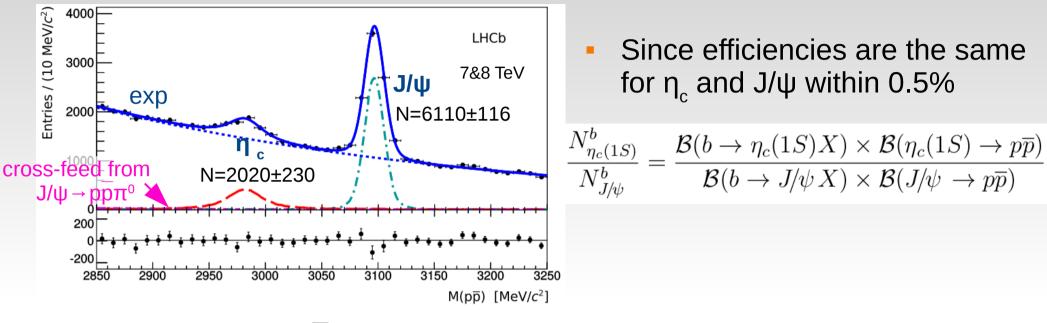
• $\chi_{b}(1,2,3P) \rightarrow Y(1,2,3S)y$ with unconverted photons at 7&8 TeV



• Ratio of $\chi_{b2}(1P)$ and $\chi_{b1}(1P)$ cross-sections with converted photons

$\eta_{c}(1S)$ production

- Complementary to studies of J/ ψ , ψ (2S) and $\chi_{c0,1,2}$ production
- NLO NRQCD predicts different p_{τ} -dependence for η_c and J/ ψ and χ_{cJ}
- Probe inclusive b→η_cX decays CLEO limit: $\mathcal{B}(B^-, \overline{B}^0 \to \eta_c(1S)X) < 9 \times 10^{-3}$ at 90% PRD 52 (1995) 2661
- $\eta_c \rightarrow p\overline{p}$ and $J/\psi \rightarrow p\overline{p}$ decay modes are used $\mathcal{B}(\eta_c \rightarrow p\overline{p}) = (1.52 \pm 0.16) \times 10^{-3}$
- Selection:
 - trigger by hadron calorimeter
 p_⊤(pp) > 6.5 GeV/c
 - $p_T(p,\overline{p}) > 2 \text{ GeV/c}$ $2 < y(p\overline{p}) < 4.5$
 - PID requirements



EPJC 75 (2015) 311

PRD 70 (2004) 054014

- Separate prompt production and b-decays with
 - pseudo-decay time ($t_z = \Delta z M / p_z$)
 - impact parameters of protons with respect to primary vertex

η_c(1S), from b-decays EPJC 75 (2015) 311

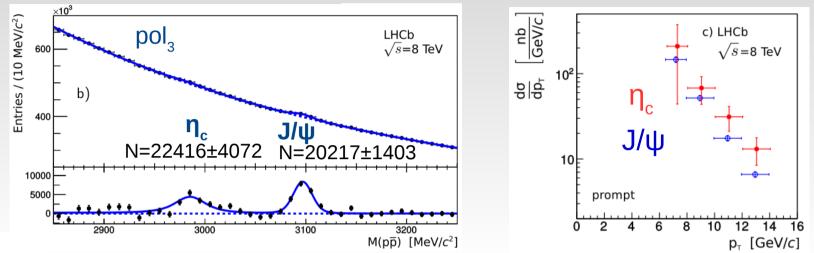
• Neglecting the $p_{\tau}(p\overline{p})>6.5$ GeV/c bias derive:

dominant systematics:

First measurement

 $\mathcal{B}(b \to \eta_c(1S)X)/\mathcal{B}(b \to J/\psi X) = 0.421 \pm 0.055 \pm 0.025 \pm 0.045_{\mathcal{B}}$

in agreement with CLEO upper limit


background model, J/ψ polarization, cross-feed from prompt

• Mass difference: $\Delta M_{J/\psi, \eta_c(1S)} = 114.7 \pm 1.5 \pm 0.1 \, \text{MeV}/c^2$

in agrement with world average (PDG 2014)

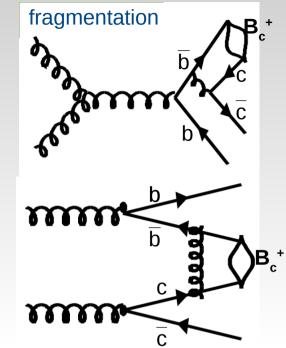
η_c(1S), prompt

Constraint signal shape from fit of "from b-decays" sample

Similar p_{τ} dependence for η_{c} and J/ψ (in contrast to NRQCD expectations)

$$\left(\sigma_{\eta_c(1S)} / \sigma_{J/\psi} \right)_{\sqrt{s}=8 \text{ TeV}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17_{\mathcal{B}},$$
$$\left(\sigma_{\eta_c(1S)} / \sigma_{J/\psi} \right)_{\sqrt{s}=7 \text{ TeV}} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18_{\mathcal{B}},$$

dominant systematics: $\Gamma(\eta_{r})$, background model


Use previously measured J/ψ cross-section as reference
 Line previously measured J/ψ cross-section as reference

CONSISTENT WITH COLOR-SINGLET INLO PREDICTIONS

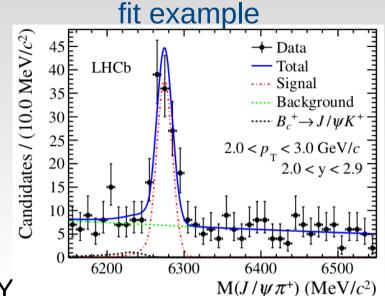
EPJC 75 (2015) 311

B_c⁺ production

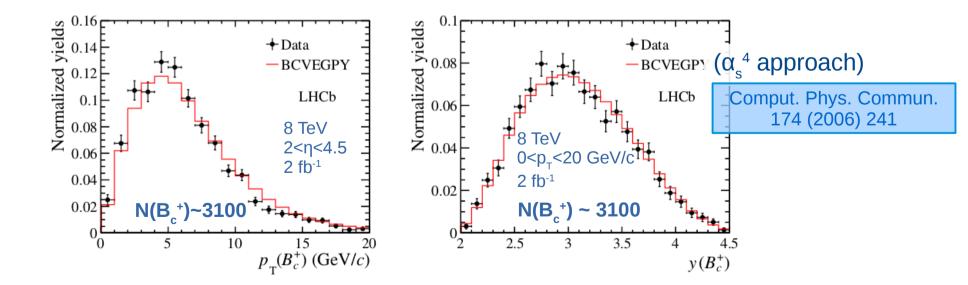
- Similarities of B_{c}^{+} with both B mesons and quarkonium
- Main process: $gg \rightarrow (b\overline{b})(c\overline{c}) \rightarrow B_c^+ + b + \overline{c}$ (order of α_s^4) suppression $\sigma(B_c^+)/\sigma(B^{+/0}) \sim 10^{-3}$ arXiv:hep-ph/9408284 Phys. Atom. Nucl. 67 (2004) 1559
- Competitive role of fragmentation and recombination
- \rightarrow different impact on p_T spectra
- + difference with B^{+/0} spectra

recombinantion

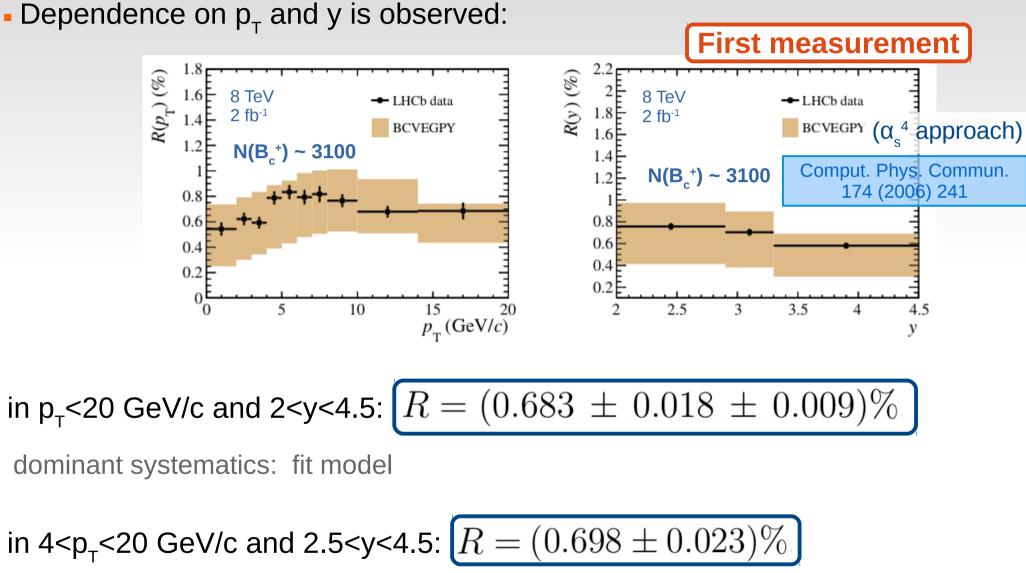
- Measure cross-section with respect to B⁺: using decays $B_c^+ \rightarrow J/\psi\pi^+$ and $B^+ \rightarrow J/\psi K^+$ with similar kinematics


$$R_{c/u} = \frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to J/\psi \pi^+)}{\sigma(B^+)\mathcal{B}(B^+ \to J/\psi K^+)} = \frac{N(B_c^+ \to J/\psi \pi^+)}{\epsilon_{\text{tot}}^c} \frac{\epsilon_{\text{tot}}^u}{N(B^+ \to J/\psi K^+)}$$

• Previously only average ratios of $\sigma(B_c^+)$ to $\sigma(B^+,B_s^{0})$ were measured at LHCb and CMS PRL 109 (2012) 232001 PRL 111 (2013) 118801 JHEP 01 (2015) 063


→ measure the kinematics dependence for the first time Polyakov Ivan, EPS-HEP, 23 July 2015

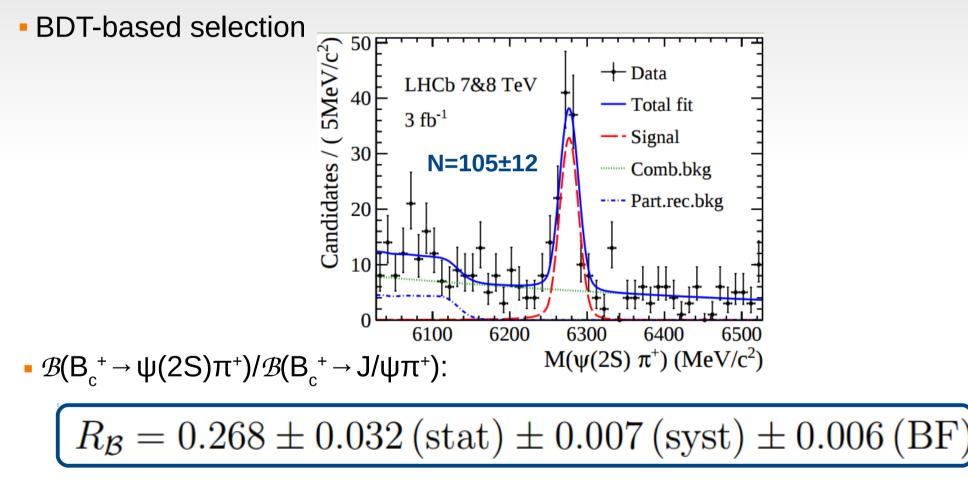
B⁺ production, 8 TeV PRL 114 (2015) 132001


- Study R_{c/u} kinematic dependency in range 0<p₁<20 GeV/c and 2<y<4.5
- BDT-based selection

Excellent description of B_c⁺ spectra by BCVEGPY

B⁺ production, 8 TeV PRL 114 (2015) 132001

(to compare with previous measurement)


consistent with measurements at 7 TeV (0.61±0.12)%

Polyakov Ivan, EPS-HEP, 23 July 2015

$B_c^+ \rightarrow \psi(2S)\pi^+$

• Update measurement on relative \mathcal{B} of $B_c^+ \rightarrow \psi(2S)\pi^+$ and $B_c^+ \rightarrow J/\psi\pi^+$ based on only 7 TeV data: $0.250 \pm 0.068 \,(\text{stat}) \pm 0.014 \,(\text{syst}) \pm 0.006 \,(\text{BF})$

consistent with the previous measurement

Summary

- LHCb provides unique input for QCD with exploiting HF production in forward region
- $\chi_{b}(nP) \rightarrow Y(n'S)\gamma$ with unconverted and converted photons
- $\eta_c(1S)$ production (first time measured in pp collisions)
- B_c^+ differential cross-section + update on $\mathcal{B}(B_c^+ \rightarrow \psi(2S)\pi^+)$

• We are looking forward for run at 13 TeV