

b-flavour tagging in pp collisions

Alex Birnkraut on behalf of the LHCb collaboration

Basics

Introduction

Measurements of flavour oscillations and timedependent CP asymmetries in neutral B meson systems require knowledge of the b quark flavour at production. This identification is performed by the Flavour Tagging (FT). [1,2]

Two independent classes of algorithms

- same side taggers (SS)
 - use charged particles created in the fragmentation process of the *b* quark of the signal *B* meson

 \rightarrow SS kaon / SS kaon nnet

- kaon for B_s^0
- pion for B^0 \rightarrow SS pion - proton for B^0 \rightarrow SS proton

Flavour Tagging in Run I

Usage in analyses

- one calibration per tagger valid for all channels
- systematic uncertainties from
 - calibration methods
 - results in different control channels
- "ad-hoc" calibration using best-suited control channels for analyses dominated by FT uncertainty
- Highlights of flavour-tagged measurements
- Measurements of ϕ_s

- CP violation in $B^0 \rightarrow J/\psi K_s^0$ (sin 2 β)
 - analysis on 2011 data: $\varepsilon_{\rm eff} = 2.38$ % [9]
 - full Run I analysis: $\varepsilon_{\rm eff} = 3.02\%$ [10]
 - \rightarrow SS pion tagger adds more than 0.376 % to $\varepsilon_{\rm eff}$

- opposite side taggers (OS) exploit the non-signal *b* quark of the initial *bb* pair
 - overall charge of the secondary vertex (SV) \rightarrow OS vertex charge
 - lepton from semi-leptonic *b* hadron decays \rightarrow OS muon / OS electron
 - kaon from the $b \rightarrow c \rightarrow s$ decay chain \rightarrow OS kaon
 - D meson from the $b \rightarrow c$ decay chain \rightarrow OS charm (New!)

Each tagger provides a decision d on the initial flavour ("tag") and a probability to be wrong, η .

Decay mode	Relative $arepsilon_{ ext{tag}}$	Relative $arepsilon_{ m eff}$	
$B^0_s ightarrow J\!/\psiK^+K^-$	3.13%[3]	3.73%[4]	
$\overline B{}^0_s o J\!/\psi\pi^+\pi^-$	2.43%[5]	3.89%[6]	
$\overline{B}{}^0_s \rightarrow D^+_s D^s$	_	5.33%[7]	

- newest analyses profited from:
- \rightarrow including SS kaon nnet tagger
- \rightarrow re-optimisation of OS algorithms

 $t \,(\mathrm{ps})$ precision analysis \rightarrow "ad-hoc" FT calibration \rightarrow OS algorithms calibrated with $B^+ \rightarrow J/\psi K^+$ \rightarrow SS pion calibrated with $B^0 \rightarrow J/\psi K^{*0}$

• *CP* violation in $B^0_s \rightarrow J/\psi K^0_s$

 $2 \text{ MeV}/c^2$

Eve

 10^{2}

- not possible to exclude B^0 events in selection

- B^0 events: $\varepsilon_{\rm eff} = 2.62\%$ [11]
- \rightarrow small tagging power of SS kaon for B^0 :
- same-side protons misidentified as kaons
- kaons from same-side K^* (892)
- kaons have opposite charge for B^0 : \Rightarrow

Flavour Tagging characteristics

 \mathcal{E}_{\dagger}

mistag

fraction of events with a wrong tagging decision

$$\omega = rac{N_{
m wrong}}{N_{
m right} + N_{
m wrong}}$$

tagging efficiency fraction of events with a tagging decision

$$L_{ag} = rac{N_{right} + N_{wrong}}{N_{all}}$$

effective tagging efficiency represents the statistical reduction factor of a sample in a tagged analysis

$$arepsilon_{ ext{eff}} = arepsilon_{ ext{tag}} \left(1 - 2 \omega
ight)$$

Calibration

Mistag calibration

SS kaon nnet adds more than 1.3% to $\varepsilon_{\rm eff}$ [8]

0.3

 τ modulo $(2\pi/\Delta m_s)$ [ps]

analysis on 2011 data: $\hat{\epsilon}_{\rm eff} = 5.07$ %

0.1

0.2

 τ modulo ($2\pi/\Delta m_s$) [ps]

0.3

tagging decision has to be inverted

Developments

OS charm tagger (preliminary)

0.1

• reconstruct $D^0/D^{\pm}/D^*$ decays related to OS b decay

Decay mode	Relative $arepsilon_{ ext{tag}}$	Relative $arepsilon_{ m eff}$
$D^0 o K^- \pi^+$	10.0%	24.0%
$D^0 o K^- \pi^+ \pi^+ \pi^-$	5.9%	8.4%
$D^+ o K^- \pi^+ \pi^+$	10.3%	2.6%
D^0 , $D^+ o K^- \pi^+ X$	69.7%	61.5%
D^0 , $D^+ o K^- e^+ X$	0.5%	0.2%
D^0 , $D^+ o K^- \mu^+ X$	3.4%	0.3%
$\Lambda_c^+ o p^+ K^- \pi^+$	0.2%	2.4 %

- one boosted decision tree (BDT) for each mode [12]
- clean measure of *B* meson flavour (low mistag)
- stand-alone tagging power of $\varepsilon_{\rm eff} = 0.30$ % to 0.40 %

SS pion calibration

- calibration performed with $B^0 \rightarrow J/\psi K^{*0}$
- full evaluation of systematic uncertainties
- used for the first time in the measurements of

SS kaon tagging using neural nets (NN)

• basic idea: use two NN

- $B^+ \rightarrow J/\psi K^+, B^+ \rightarrow D^0 \pi^+$ charged channels: extract ω by comparing tag decision with charge of the final state
- $B^0 \to J/\psi K^{*0}, B^0 \to D^{*-}\mu^+\nu_{\mu}, B^0_s \to D^-_s \pi^+, ...$ neutral channels: full time-dependent analysis to extract ω from the mixing asymmetry

 $\mathcal{A}_{ ext{mix}}(t) \propto (1-2\omega) \cos(\Delta m_{d/s} t)$

- $\sin(2\beta)$ with $B^0 \rightarrow J/\psi K_S^0$ $\Rightarrow \varepsilon_{\text{off}}^{\text{SS}\pi} = 0.38\%$
- $\sin(2eta_{
 m eff})$ with $B^0 o J/\psi \, \pi^+ \pi^-$
- $\Rightarrow \epsilon_{\text{aff}}^{\text{SS}\pi} = 0.54\%$

References

- [1] LHCb Collaboration, R. Aaij et. al., *Opposite-side flavour tagging of B* [5] LHCb Collaboration, R. Aaij et. al., *Measurement of the CP-violating phase* LHCb Collaboration, R. Aaij et. al., Measurement of CP violation in [10] ϕ_s in $\overline{B}^0_s \rightarrow J/\psi \pi^+\pi^-$ decays, Phys.Lett. B713 (2012) 378-386 mesons at the LHCb experiment, Eur.Phys.J. C72 (2012) 2022 $B^0 \rightarrow J/\psi K_s^0$ decays, Phys.Rev.Lett. 115 (2015) 3, 031601 [2] LHCb Collaboration, R. Aaij et. al., Optimization and calibration of the LHCb Collaboration, R. Aaij et. al., *Measurement of the CP-violating phase* LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent same-side kaon tagging algorithm using hadronic B^0_s decays in 2011 data, ϕ_s in $\overline{B}{}^0_s \rightarrow J/\psi \pi^+\pi^-$ decays, Phys.Lett. B736 (2014) 186-195 CP asymmetries in $B_s^0 \rightarrow J/\psi K_s^0$, JHEP 1506 (2015) 131 [7] LHCb Collaboration, R. Aaij et. al., *Measurement of the CP-violating phase* LHCb-CONF-2012-033 LHCb Collaboration, R. Aaij et. al., B flavor tagging using reconstructed [3] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation and ϕ_s in $\overline{B}^0_s \rightarrow D^+_s D^-_s$ decays, Phys.Rev.Lett. 113 (2014) 21, 211801 charm decays at the LHCb experiment, LHCb-PAPER-2015.027 the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi K^+ K^-$ and LHCb Collaboration, R. Aaij et. al., Measurement of CP asymmetry in [8] [13] G. A. Krocker, Development and calibration of a same side kaon tagging al- $\overline{B}_{s}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$ decays, Phys.Rev. D87 (2013) 11, 112010 $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays, JHEP 1411 (2014) 060 gorithm and measurement of the $B_s^0 - \overline{B}_s^0$ oscillation frequency Δm_s at the [4] LHCb Collaboration, R. Aaij et. al., *Precision measurement of CP violation* LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent LHCb experiment, PhD thesis, Heidelberg U., Sep, 2013, CERN-THESIS-[9] in $B_s^0 \rightarrow J/\psi K^+ K^-$ decays, Phys.Rev.Lett. 114 (2015) 4, 041801 *CP* asymmetry in $B^0 \rightarrow J/\psi K_s^0$ decays, Phys.Lett. B721 (2013) 24-31 2013-213
- on multiple candidates [13]
- SS kaon nnet tagger is a great success, compared to the previous cut-based SS kaon it gives
 - $-B_s^0 \rightarrow D_s^- \pi^+$: 50 % relative improvement in $\varepsilon_{\rm eff}$
 - $-B_s^0 \rightarrow J/\psi \phi$: 41 % relative improvement in $\varepsilon_{\rm eff}$