

EPS-HEP 2015 Vienna, 24/7/2015

Searches for CP violation in multibody Charm decays Maurizio Mananelle CP H On Dela Fille H Bircola Jonation

CP Violation in Charm Mesons Decays

Small CKM contribution

CPV is expected to be small in the charm sector since tree-level topology dominates the decay at scales $m_c < \mu < m_b$

New Physics

May enhance this amplitude through the introduction of new processes and particles

CPV in Charm is a clean probe for NP!

Recent results

- Experiments have recorded enough statistics to probe CPV with sensitivities approaching 10⁻³
- If any NP effect is out there we should start to be able to see it

G. Isidori et al., Phys. Lett. B711 (2012) 46

(a) Tree diagram.

 \bar{s}

Multibody Charm decays

Interesting probes for CPV

- Allow to access a wide range of decays within the same final state that may have different contributing processes
- drawback: final state interactions introduce strong phase differences

Interpreting the results

- Other techniques are sensitive to CPV but are not able to identify its source
- Need to approach the topic from various sides

Techniques applied on LHCb data

• Energy Test: $D^0 \rightarrow \pi^+ \pi^- \pi^0$ • $S_{CP}: D^+ \rightarrow \pi^+ \pi^- \pi^+, D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-, D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ • $KNN: D^+ \rightarrow \pi^+ \pi^- \pi^+$ • Amplitude analysis: $D^0 \rightarrow K^0 {}_{S}K^{\pm}\pi^{\mp}$ • $Triple-product correlations: D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ • Alternative observables

Many first's

- First Charm analysis in LHCb using π^{0} 's
- First analysis using "Energy test" method for CPV search

Energy Test

- Comparison of the average-pairwise distances on Dalitz plot among all D⁰ events, all D
 ⁰ events, and all D⁰ events to all D
 ⁰ events
- Test statistic T:

T→0: equal distances among points \implies no asymmetry T>0: distances in D^0 Dalitz plane larger than those in \overline{D}^0

Results

- Produced data-permutation samples with no-CPV hypothesis to extract no-CPV T-value distribution (with GPUs)
- p-value = (2.6±0.5)%

Energy Test

• Best sensitivity to date for CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$

Method allows to visualise regions with larger asymmetry

S_{CP} (aka Miranda)

Bediaga et al., Phys. Rev. D80 (2009) 096006 BaBar, Phys. Rev. D78 (2008) 051102

Hunting for local asymmetries

- Decaying phase space divided in bins
- Compare the number of events for the two D flavours

$$S_{CP}^{i} = \frac{n_{i}(D) - \alpha n_{i}(\bar{D})}{\sqrt{\sigma_{i}^{2}(D) + \alpha \sigma_{i}^{2}(\bar{D})}}, \alpha = \frac{\sum_{i} n_{i}(D)}{\sum_{i} n_{i}(\bar{D})}$$

$$n_{i} = \text{\# events per bin, } \sigma_{i} = \text{error on } n_{i}$$

- S_{CP} is distributed as Gaussian G(μ=0,σ=1) for CP conserving decays
- p-value from

OLE POLYTECHNIOU

$$\chi^2 = \sum_i (S_{CP}^i)^2$$

• Method is tested on toy studies with different binning schemes (number of events, strong phase similarity)

The S_{CP} Technique

$S_{\mbox{\scriptsize CP}}$ in three- and four-body D decays

LHCb, Phys. Lett. B726 (2013) 623 LHCb, Phys. Lett. B728 (2014) 585

- 3.1M D⁺ events
- 49 adaptive bins of equal population
- Sensitivity 2° phase difference and 2% amplitude in $\rho(700)\pi^+$, $\sigma(500)\pi^+$, $f_2(1270)\pi^+$

SCP

• p-value = 99.5%

COLE POLYTECHNIOUE

- 57k D⁰ events
- 32 adaptive bins of equal population
- Sensitivity
 10° phase difference and
 10% amplitude in φρ
- p-value = 9.1%

- 0.3M D⁰ events
- 128 adaptive bins of equal population
- Sensitivity

 10° phase difference and
 10% amplitude in
 a₁(1260)π⁺
- p-value = 41.0%

Amplitude analysis: $D^0 \rightarrow K^0_S K \pi$

First LHC Charm amplitude analysis measurement!

- Yes, we can do that!
- Large statistics (~180k)
- Complex Dalitz plot structure
- Used GPU's

Not only CPV

• Tests of SU(3) flavour symmetry

Amplitude Analysis

- Isobar models of D⁰ decays assuming CP conservation useful for mixing measurements and γ in B⁻→D⁰K⁻
- Removing CP assumption, model-dependent search for CPV

Benchmark for future LHCb multibody analysis

The experience gained is being used to perform amplitude analysis of other channels
 D⁰→K⁰_Sh⁺h⁻
 D⁺→h⁺h⁻h⁺

$D^0 \rightarrow K^0 {}_{s} K \pi$ Dalitz plot

LHCB-PAPER-2015-026

Resonance states

Model

 S-wave: GLASS vs. LASS give consistent results

Coherence factors

- R_{KsKπ}, R_{K*K} improved factor 10 wrt CLEO
- Do not depend by S-wave parametrisation

 $D^0 \rightarrow K^0 SK\pi$

Strong phase difference consistent wrt 0

CPV search and other measurements

LHCB-PAPER-2015-026

Model dependent CPV

• Introduce CPV parameters in the model

- Sign depending on D0 flavour
- Perform a χ^2 test wrt to no CPV hypothesis fit (Δ =0) $\chi^2/n_{dof} = 32.3/32 = 1.01 \rightarrow p$ -value = 0.45

Branching Ratio

$$\mathcal{B}_{K_{S}^{0}K\pi} \equiv \frac{\mathcal{B}(D^{0} \to K_{S}^{0}K^{+}\pi^{-})}{\mathcal{B}(D^{0} \to K_{S}^{0}K^{-}\pi^{+})} = 0.655 \pm 0.004(\text{stat}) \pm 0.006(\text{syst})$$
$$\mathcal{B}_{K^{*}K} = 0.370 \pm 0.003(\text{stat}) \pm 0.012(\text{syst})$$

SU(3) flavour symmetry test

 $D^0 \rightarrow K^0 SK\pi$

 Results in agreement between LASS and GLASS and in favour of theoretical scenario with small η-η' mixing angle

Triple product correlations

- Spinless particle \rightarrow minimum 4-body
- Spin particle \rightarrow minimum 3-body

Asymmetries

• Built on the D and D sample separately

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma}$$
$$\bar{A}_T = \frac{\bar{\Gamma}(-\bar{C}_T > 0) - \bar{\Gamma}(-\bar{C}_T < 0)}{\bar{\Gamma}}$$

• Combined to get the CPV asymmetry

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

Sensitivity

Complementary to direct CPV observables wrt to strong phase contribution

$$\frac{a_{CP} \propto \sin \Delta \delta \sin \Delta \phi}{CP} \propto \cos \Delta \delta \sin \Delta \phi \quad (*)$$

(*) **Caveat**: in a_{CP} the two phases are from different diagrams, in a_{CP}^{Todd} from different spin contributions

a

In a nutshe

TP correlations in $D^0{\longrightarrow}K^+K^-\pi^+\pi^-$

JHEP10(2014)005

Semileptonic B decay

- D⁰→K⁺K⁻π⁺π⁻ from semileptonic B decays, tagged from muon charge B→D⁰μ⁻X, D⁰→K⁺K⁻π⁺π⁻
- Clean sample

Data Sample

• 2011+2012: 3fb⁻¹

Fit Model

ÉCOLE POLYTECHNIOUE

- Samples simultaneously fit to a model of two Gaussian distributions over an exponential shape
- Asymmetry parameters extracted from the fit

 $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

Three Measurements

1. Integrated

 $a_{CP}^{T-\text{odd}}(D^0) = (1.8 \pm 2.9(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-3}$

2. Bins of phase-space

No significant deviation from 0 observed *CP* conservation tested with $P(\chi^2)=74\%$

3. Bins of D⁰ decay time
 No significant deviation from 0 observed
 CP conservation tested with P(χ²)=83%

TP in $D^0 \rightarrow K^+K^-\pi^+\pi$

COLE POLYTECHNIOUE

Phase space region

A_T and \overline{A}_T ?

 $B \rightarrow D^0 \mu^- X, D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

Parity violation or FSI Effects?

- A_T and A_T are P-odd observables
- It's possible that FSI are producing effects in all the three measurements
- Significant differences in bins of phase space
- Average consistent wrt *D*⁰ decay time
- Wide spectrum of resonances and rescattering among the final state particles

 $A_T(D^0) = (-71.8 \pm 4.1(\text{stat}) \pm 1.3(\text{syst})) \times 10^{-3}$ $\bar{A}_T(D^0) = (-75.5 \pm 4.1(\text{stat}) \pm 1.2(\text{syst})) \times 10^{-3}$

TP in $D^0 \rightarrow K^+K^-\pi^+\pi^-$

P-violation or FSI?

Conclusions

Multi body Charm and CPV

- The rich final state structure is excellent for studying different decay processes at once
- CPV can hide in specific corners of phase space

Techniques

- Model-independent searches as a discovery tool
- Amplitude analysis provide full understanding of the decay process
- Multi-body decays allow to study other observables such as triple products

Status and Outlook

- LHCb has just started to probe CPV in multi-body decays with sensitivities ~0.3%
- Many techniques have been developed during Run1 and are being refined for Run2
- In particular, model-dependent studies of large Charm data samples are on their way