

Maxime Gouzevitch

Electroweak physics measurements at the LHC

EPS HEP 2015

On behalf of the CMS and ATLAS collaborations

0) LCH physics landscape

EWK session: https://indico.cern.ch/event/356420/session/6/?slotId=7#20150723

0) Role of LHC in EWK landcape

LHC is not a machine designed a priori for ElectroWeak (EWK) physics: large Pile-Up.

Event from special high pu run: 78 reconstructed vertices and 2 muons.

- But general purpose detectors were carefully designed to discover Higgs bosons with leptons/photon probes: e, μ , γ .
 - Efficient (> 80-90%)
 - Good separation of "isolated" leptons from EWK decays and in-jet leptons.
 - → Trigger systems was optimized for probes with $p_T < M_W/2$.
- EWK physics is a very important "by-product" of the LHC design:
 - ➡ W is produced in s-channel in DY at Tevatron/LHC but not in ee collisions at LEP: large statistical sample to study W properties mass/width.
 - VV production have to be well understood/measured: To support Higgs discovery. It is an (interfering) background for Higgs decays in VV final state.
 - High mass VV production and VV scattering are sensitive to the terms of SM/BSM Lagrangian well beyond LEP reach.

0) Table of content

0) Table of content

0) Table of content

High precision W/Z physics

1.1) High precision W mass

PDG 2015 - CP C38 (2014) 090001

- M_w is the leading uncertainty in SM consistency tests.
- Previous measurements sets a natural goal of O(10 MeV) for the LHC.
 - LEP measurement limited by statistics ($N_{ww} = O(40000)$ events).
 - − Tevatron uses DY W \rightarrow ev/ $\mu\nu$ events.
 - LHC follow the same trategy: statistics is 100 times larger than LEP one and not a limiting factor.

1.2) W mass challenge at the LHC

Current status:

 $\Delta(QCD/QED) \sim \Delta(calib) \sim \Delta(stat)$

Future (LHC/Tevatron):

$$\Delta(QCD/QED) > \Delta(calib) > \Delta(stat)$$

ATL-COM-PHYS-2009-102

$$\overline{p_T^{\nu}} = -\left(\overline{p_T^l} + \vec{u}\right)$$

$$M_T = \sqrt{p_T^l p_T^{\nu} (1 - \cos(\Delta \phi))}$$

- No QCD Initial State Radiation (ISR)
- With ISR

m_⊤ [GeV]

With detector smearing

 M_{T} : low dependence on QCD radiation, but large sensitivity to hadronic recoil

P_{T,l}: low sensitivity to experimental systematics, large dependence on QCD radiation.

1.3) $\sin^2\theta_w$ extraction

Weinberg angle extracted from tensor structure of

- Challenging!Need to find q and qbar.
- Easy ppbar and e⁺e⁻, hard in pp (dilution).

For comparison: CDF PRD 89 (2014) 072005

ATLAS - arXiv:1503.03709

1.3) $\sin^2\theta_w$ extraction

Weinberg angle extracted from tensor structure of

- Challenging!Need to find q and qbar.
- Easy ppbar and e+e-, hard in pp (dilution).
- 0.5% precision! Still room to improve to become world competitive.
- CMS AFB mesured but no cos yet → coming soon.

CMS-PAS-SMP-14-004

For comparison: CDF PRD 89 (2014) 072005

• Related to W mass through:

$$\cos\theta_W = \frac{m_W}{m_Z}$$

Part of the same high precision analysis at LHC

VV production

2.1) VV production in SM

- VV production is the bread and butter of EWK physics: all possible final states are measured ($\gamma\gamma$ production is not discussed in this talk)!
- Below a summary of what was performed till now.

7 TeV	W	Z
W	CMS: EPJC 73 (2013) 2610 ATLAS: PRD 87 (2013) 112001	
Z	CMS : SMP-12-006 ATLAS : EPJC 72 (2012) 2173	CMS: JHEP 01 (2013) 063 (4l) CMS: arXiv: 1503.05467 (2l2v) ATLAS: JHEP 03 (2013) 128 (4l+2l2v)
γ	CMS: PRD 89, 092005 (2014) ATLAS: PRD 87, 112003 (2013)	CMS : PRD 89 (2014) 092005 (IIγ) CMS : JHEP 10 (2013) 164 (2νγ) ATLAS : PRD 87 (2013) 112003 (IIγ)

ı	8 TeV	W	Z	
	W	CMS: arXiv:1507.03268 ATLAS: ATLAS-CONF-2014-033		
	Z	CMS: SMP-12-006 ATLAS: ATLAS-CONF-2013-021	CMS: PLB 740 (2015) 250 CMS: arXiv:1503.05467 ATLAS: ATLAS-CONF-2013-020	(4l) (2l2v) (4l+2l2v)
	γ		CMS: JHEP 04 (2015) 164	(IIγ)

2.2) VV production: leptonic final states

- $ZZ \rightarrow 4l, WZ \rightarrow 3lv$:
 - Very clean final states.
 - S/B >> 1

ATLAS ZZ 8 TeV: ATLAS-CONF-2015-031

CMS ZZ 8 TeV: PLB 740 (2015) 250

- WW \rightarrow 2l2v, ZZ \rightarrow 2l2v:
 - Larger BF.
 - S/B > 1: ttbar and Z $\rightarrow \tau\tau$ are irreducible backgrounds.
 - V+jets an important background with fake E_{T,miss}. Using data to e

2.3) Leptonic WW measurement

- - Using eμ final state to reduce DY.
 - Minor backgrounds: tW, WZ/ZZ fixed to SM prediction
 - Backgrounds from jets faking leptons extracted from data.

Well separated in $E_{T,miss} \times N_{jets} \text{ space:}$ $WW - lage \ E_{T,miss}$ $N_{jets} \sim 0$ $ttbar - lage \ E_{T,miss}$ $N_{jets} > 0$ $Z \rightarrow \tau\tau - low \ E_{T,miss}$

- Well measured cross sections at 7 TeV dominated by systematics (mainly in E_{Tmiss}):
 - Typical uncertainty < 10%.

2.4) Photons and jet final states

- **2** Zγ, Wγ:
 - V+jets an important background with jets faking photons (leading π^0).
 - S/B > 1: background systematics matters.

CMS-PAS-SMP-14-019

- WV → lvjj:
 - Rediscovery at LHC of quark final states in EWK physics.
 - Largest Branching Fraction important at large $M_{_{\mathrm{UV}}}$. Interesting for aTGC.
 - S/B << 1 : large background systematics

2.5) Hadronic decays of V: W/Z → jj ; Z → bb

- Low S/B; Template fit within each $p_{T,ij}$ bin. The W → qq signal is clearly observed.
- Main systematic from W/Z+jets background templates.
- Requiring 2 b-tags it is also possible to observe $Z \rightarrow bb$ (EPJC 74 (2014) 2973)

2.6) Physics interpretation: low p_{T,V}

- Good agreement for fiducial measurements vs SM prediction at NLO for ATLAS.
- Interesting exception WW production that generated few BSM papers. What happens there?

2.7) Physics interpretation: low $p_{T,V}$

- Differential CMS measurement at 7 TeV: compared to NLO. Excess at 7 TeV was localized at low $p_{T,max}^{l}$ (or low M_{VV}).
- Since then large efforts done to understand this phenomenon:
 - NNLO + NNLL prdictions produced and included in experimental measurement.
 - Rare processes considered: Higgs production, $\gamma \gamma$ induced, diffraction etc...
- Under active work: very exciting laboratory or complex and rare QCD/EWK processes.

2.8) Physics interpretation: aTGC

• The new physics in VV sector can be effectively parametrized by an operators expansion.

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda} \mathcal{L}^{D=5} + rac{1}{\Lambda^2} \mathcal{L}^{D=6} + rac{1}{\Lambda^3} \mathcal{L}^{D=7} + rac{1}{\Lambda^4} \mathcal{L}^{D=8} + \dots$$

- 1st order of new physics compatible with precision tests: D6
- Λ is the BSM scale (typically > 1 TeV)
- Need to be careful with unitarity violations.

- large $M_{_{
 m UV}}$
- large p_{TV} if M_{VV} cannot be reconstructed.

arXiv:1507.03268

2.9) Physics interpretation: : aTGC and high $p_{T,V}$

- « LEP » parametrisation: all parameters 0 for SM.
- For the charged aTGC: LHC on the leading edge of world sensitivity.
 - − New physics with ~5% of SM coupling strength is excluded.
- The WV final state is slightly more sensitive than WW one.
- For more info and neutral aTGC see: http://cern.ch/go/kMP8

Electroweak production

3) LHC as a VV collider

- The Vector-Boson fusion process (1) is well known channel to search for Higgs boson and measure the SM Lagrangian properties.
- In fact this is a general process in SM "EWK scattering": a way to turn the quark-gluon collider to a vector boson collider!
 - TGC like scattering (similar to VV):
 - VV → V similar to VBF H.
 - QGC like scattering (similar to VVV):
 - VV → VV scattering interesting to study unitarization in SM.

3.1) EWK production: comparison H and Z/W

(0)VBF H

- 1) VBF Z
- 2) Z Brem.
- 3) Multiperipheral
- 4) Z Brem.
- 5) DY

- For Higgs the signal is quite clean mainly (0)
- For Z production: S=EWK (1-2-3); B=STRONG: (4) interfering; (5) not-interfering.
- \circ σ (Z → ll) cross section in « EWK phase-space »: 200 fb.
- Main properties:
 - At LO in QCD tagging jets are quarks, not gluons.
 - Large $|\Delta\eta|$ between 2 tagging jets and large M_{ij} . Not case for strong production.
 - Low activity between jets and well balanced system Z vs JJ.
- In Run I VBF H is very challenging. Do we have a proof we understand this process? But EWK Z and W can be discovered and properties of this process studied.

3.2) EWK Z/W production: technique

- S/B < 1: used cuts/Multi-Variate-Analysis (MVA) with many variables to improve it.</p>
- M_{ii} spectrum give the best handle for S-B separation.
 - STRONG background is data driven: Large systematics.
 - Jet Energy Scale/Resolution:
 important especially since 1 jet is typically in forward region (no tracker coverage).

Template fit.

• Shapes taken from side bands, typically region with large jets activity.

• For Run II: possibility to have pure EWK sample once enough stats.

CMS Z 8 TeV: EPJC 75 (2015) 66 CMS Z 7 TeV: JHEP 10 (2013) 101

3.3) EWK Z/W production: results

- Clearly the process is discovered.
- Measurements compatibles with SM.
- Less sensitive to aTGC than VV production.
- Already dominated by the systematics.
- STRONG backgrounds better constraint
- → reduce systematics.

	Fiducial σ	Stat	Sys
CMS Z 7 TeV	154 fb	16 %	35 %
CMS Z 8 TeV	174 fb	9 %	23 %
ATLAS Z 8 TEV	57.7 fb	8 %	+18 - 19 %
CMS W 8 TeV	42 fb	10 %	22 %

- The inter-jet activity is studied.
- Reasonably described within 20% by SHERPA/POWHEG.
- Important information for VBF H measurements.

3.4) EWK production: W±W±

First direct look on VV → VV vertex ever done!

 $\sigma^{\rm fid} = 1.3 \pm 0.4 ({\rm stat}) \pm 0.2 ({\rm syst}) ~{\rm fb}$

 $1.9\sigma \ (2.9\sigma)$

ATLAS: PRL 113 (2014) 141803

CMS: PRL 114 (2015) 051801

- The W±W±2j is the most sensitive final state to EWK VV production: low QCD background, no ttbar background.
- Production at the edge of the LHC sensitivity: stat. dominated. [remember $\sigma(1 \text{ fb}) = 20 \text{ events}$].
- BUT, we have an evidence of this process!!!

3.5) $\gamma \gamma \rightarrow p*WWp*$ production

CMS 7 TeV: JHEP 07 (2013) 116 CMS 8 TeV: FSQ-13-008

- Sensitivity to EWK TGC/QGC
- Evidence: 3.6σ
- $\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 12.3^{+5.5}_{-4.4}\text{fb.}$

- Require $e\mu$ (reduce DY) + 0 tracks associated to $e\mu$ vertex.
- Low background: WW main one.
- Dissociated proton is hard to simulate and not so well understood: it can add tracks to the vertex and reduce signal. Data driven estimate.
- ATLAS performed a measurement of the exclusive $\gamma\gamma \rightarrow \mu\mu/ee$ production, that gives a handle on $\gamma\gamma \rightarrow$ WW backgrounds. $_{arXiv:1506.07098v1}$

3.6) VVV production

PRD 90 (2014) 032008

	Fiducial σ	Stat	Sys
ATLAS Ινγγ	6.1 fb	16 %	20 %
MCFM	2.9		6 %

- VVV production is sensitive to the TGC and a bit to QGC: experimentally limited by statistics. Different ways to maximize it:
 - ATLAS: Wyy and shows for a first time an evidence (> 3 σ).
 - CMS: maximize stats using hadronic V=W/Z

3.7) Constraining aQGC

- DIM6/DIM8 operators matters $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}^{D=5} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \frac{1}{\Lambda^3} \mathcal{L}^{D=7} + \frac{1}{\Lambda^4} \mathcal{L}^{D=8} + \dots$
- AQGC leads to large center-of-mass energy of VV or VVV system.
- Note the logarithmic scale in exclusion limits: we are really in a new territory to explore.

If you had to remember 1 thing after my talk

- Run I of the LHC have proven to be the leading machine for TeV scale EWK effects within SM and BSM.
- Especially the heroic feat was to demonstrate that LHC can be used as EWK boson collider. Just need Run II statistics to really use all the potential!
- Instead of a boring conclusion just have a look on those plots:

If you had to remember 1 thing after my talk

- Run I of the LHC have proven to be the leading machine for TeV scale EWK effects within SM and BSM.
- Especially the heroic feat was to demonstrate that LHC can be used as EWK boson collider. Just need Run II statistics to really use all the potential!
- Instead of a boring conclusion just have a look on those plots:

WE ARE INDEED RESTARTING

BACKUP

1.4) ATLAS WW, ttbar, Z → ττ

	Systematic Uncertainties (%)								
Process		t ar t			WW	7		Z/γ^* -	$\rightarrow \tau \tau$
Source	\mathcal{C}	$\mathcal{A}\cdot\mathcal{C}$	Shape	\mathcal{C}	$\mathcal{A}\cdot\mathcal{C}$	Shape	\mathcal{C}	$\mathcal{A}\cdot\mathcal{C}$	Shape
ISR/FSR+Scale	±1.1	± 0.4	+1.0(-1.5)	±1.0	±0.8	+4.7(-3.5)	±1.1	± 0.4	+0.7(-1.0)
Generator	± 0.7	± 0.8	+0.2(-0.0)	± 0.6	± 0.5	+4.5(-0.4)			+0.0(-0.7)
PS Modeling	± 0.9	± 0.6	+0.0(-0.1)	± 0.5	± 1.0	+3.5(-0.0)			+0.0(-0.6)
$Z/\gamma^* \to \tau\tau$ PS Modeling			+0.0(-0.5)			+0.0(-0.6)	± 1.8	± 3.3	+0.5(-0.0)
PDF	± 0.6	± 1.7	± 0.5	± 0.1	± 0.7	± 1.6	± 0.2	± 1.3	± 0.8
e reco., ID, isolation	± 3.2		+0.0(-0.1)	±3.2		+0.3(-0.3)	± 3.3		+0.0(-0.8)
μ reconstruction	± 0.8		+0.0(-0.0)	± 0.8		+0.0(-0.0)	± 0.8		+0.0(-0.0)
$E_{\mathrm{T}}^{\mathrm{miss}}$ -cellout	± 0.0		+0.4(-0.2)	± 0.0		+8.1(-9.9)	± 0.0		+2.3(-0.2)
$E_{\mathrm{T}}^{\mathrm{miss}}$ pile-up	± 0.0		+0.1(-0.1)	± 0.0		+3.7(-4.5)	± 0.0		+1.0(-1.7)
Jet energy scale	± 0.8		+1.4(-1.4)	± 0.6		+0.5(-4.8)	± 0.5		+1.4(-3.1)
Jet energy resolution	± 0.2		+0.3(-0.0)	± 0.2		+0.0(-2.6)	± 0.2		+0.0(-0.1
Jet vertex fraction	± 0.8		+0.1(-0.0)	± 0.3		+0.0(-1.7)	± 0.2		+0.0(-0.3)
		$tar{t}$			WW	7		Z/γ^* –) ττ
Fake or non-prompt background		±0.8	3		±5.6	6		±0.	7
Luminosity		± 1.8	3		± 1.8	3		± 1.8	8
LHC beam energy		± 1.8	3		± 1.0)		± 0.8	8

1.4) Leptonic WW measurement

- Using eμ final state to reduce DY.
- Well separated in $E_{T,miss} \times N_{jets}$ space.
- 3 major signals are measured.
- tW, WZ/ZZ fixed
- Background with leptons faked by jets is extracted from data.

Process	$tar{t}$	WW	$Z/\gamma^* \to \tau \tau$
σ_X^{tot} [pb]	181.2	53.3	1174
Uncertainties (%)			
Statistical	1.5	5.0	2.1
Systematic	+5.4(-5.3)	+13.8(-14.9)	+6.1(-7.5)
Luminosity	1.8	1.8	1.8
LHC beam energy	1.8	1.0	0.8
Total	6.1	15.9	8.0

- Well measured cross sections at 7 TeV dominated by systematics (mainly in E_{T.miss}).
- WW cross section is measured the best in Njets = 0 bin since ttbar bakground limited.

1.1) VV production in SM

- VV production is the bread and butter of EWK physics: all combination o final states are measured.
- Below a summary of what was performed till now.

7 TeV	W	Z
W	CMS: EPJC 73 (2013) 2610 ATLAS: PRD 87 (2013) 112001	
Z	CMS : SMP-12-006 ATLAS : EPJC 72 (2012) 2173	CMS : JHEP 01 (2013) 063 (4l) CMS : arXiv : 1503.05467 (2l2v) ATLAS : JHEP 03 (2013) 128 (4l+2l2v)
γ	CMS: PRD 89, 092005 (2014) ATLAS: PRD 87, 112003 (2013)	CMS : PRD 89 (2014) 092005 (llγ) CMS : JHEP 10 (2013) 164 (2νγ) ATLAS : PRD 87 (2013) 112003 (llγ)
8 TeV	W	Z

ATLASCATEAS CONFO2014-033cs measurements at the LHC

1.3) M₊ extraction: hadronic recoil

Is measured using hadronic recoil.

- $p_T(Z \rightarrow ll)$ used to calibrate
- MET: < 1% precision.
- $p_T(W)$ measurement used as cross check: ~5% precision. Improvements forseen.

p^z [GeV]

1.4) $p_{T,I}$ extraction: QCD/QED uncertainties

ATL-PHYS-PUB-2014-015

CMS-PAS-SMP-14-022

$$\mathcal{A}(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \overline{\nu})}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \overline{\nu})}$$

PRD 91 (2015) 092012

- At LHC the detailed sea flavors are important, not
- well constrained by HERA.
 Need to constraint PDFs
- using W/Z production LHC data.

Example:

- W asymmetry :
- sensitive to difference between u and d valence; strangeness.
- < 1% precision

- Verify the QED effects using CMS $Z \rightarrow \mu\mu\gamma$ data.
- Data precision 5% well described by POWHEG+PYTHIA6

2.5) Hadronic decays of V: W/Z → jj ; Z → bb

- Low S/B; Template fit within each $p_{T,jj}$ bin. The W → qq signal is clearly observed.
- Main systematic from W/Z+jets background templates.

42

2.8) Physics interpretation: aTGC

• The new physics in VV sector can be effectively parametrized by an operators expansion.

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$$

- SM: D4 (or less) operators
- 1st order of new physic: D6 operators

« kappa formalism » from LEP – parametrize deviations multipliers wrt to the SM Lagrangian + higher dimension operators with derivatives

Example:

$$\begin{split} \frac{c_{WWW}}{\Lambda^2} \mathcal{O}_{WWW} &= \frac{c_{WWW}}{\Lambda^2} \mathrm{Tr}[W_{\mu\nu} W^{\nu\rho} W_{\rho}^{\ \mu}], \\ \frac{c_W}{\Lambda^2} \mathcal{O}_W &= \frac{c_W}{\Lambda^2} (D^{\mu} \Phi)^{\dagger} W_{\mu\nu} (D^{\nu} \Phi), \\ \frac{c_B}{\Lambda^2} \mathcal{O}_B &= \frac{c_B}{\Lambda^2} (D^{\mu} \Phi)^{\dagger} B_{\mu\nu} (D^{\nu} \Phi). \end{split}$$

3 Parameters

$$g_{WWV} \left[g_1^V V^{\mu} \left(W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu} \right) + \frac{\kappa_V}{\kappa_V} W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \right]$$

6 Parameters, 3 removed by $\Delta \kappa_{Z} = \Delta g_{1}^{Z} - \Delta \kappa_{\gamma} \tan^{2}(\theta_{W}),$ gauge invariace relations: $\lambda_{Z} = \lambda_{\gamma},$

Relation
$$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2} \dots$$