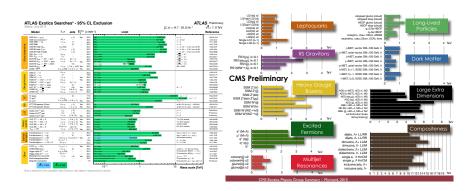
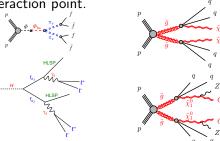
Searches for long-lived, weakly interacting particles

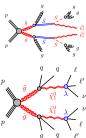
A. Hart

The Ohio State University

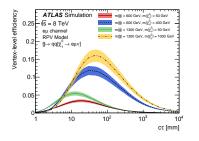
July 23, 2015

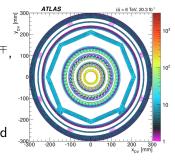



Status of new physics after LHC Run 1


- A lack of signs of new physics, despite extensive searches, is one of the most important results from Run 1.
- But we must keep in mind the assumptions we make in all these searches.
- One of the most common is that new particles will decay promptly.

Motivations for long-lived particles

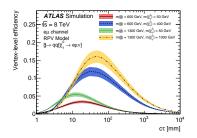

- Assuming new particles are long-lived (LL) complicates analysis stategies, background estimation, systematic uncertainties, etc.
- But there are several reasons this could be and a plethora of models that realize them:
 - heavy intermediate particles (hidden valley models, split SUSY, etc.)
 - \bullet weak couplings (couplings to $\tilde{G},$ RPV couplings, etc.)
 - ullet very limited phase space (e.g. AMSB $ilde{\chi}_1^\pm$ decays)
- This talk summarizes searches for weakly interacting, LL particles;
 i.e., searches for decay products displaced to various degrees from the interaction point.

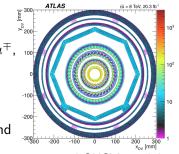


Displaced vertices ($c\tau \sim 1 \text{ cm}$)

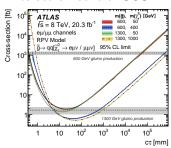
- Displaced vertices (DV) formed from clusters of >5 tracks.
- Dilepton vertices formed from $e^{\pm}e^{\mp}$, $\mu^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\mp}$ pairs.
- Density map of ATLAS used to veto vertices in dense material.
- Backgrounds from accidental crossings and merged vertices taken from data.

 No events observed in any of the seven signal regions.

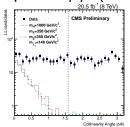

Channel		No. of background vertices ($\times 10^{-3}$)					
DV+jet		$410 \pm 7 \pm 60$					
$DV+E_T^{miss}$		$10.9 \pm 0.2 \pm 1.5$					
DV+muon		$1.5 \pm 0.1 \pm 0.2$					
DV+electron		$207 \pm 9 \pm 29$					
Channel	N	o. of background vertices $(\times 10^{-3})$					
e^+e^-		$1.0 \pm 0.2 ^{~+0.3}_{~-0.6}$					
$e^{\pm}\mu^{\mp}$		$2.4 \pm 0.9 {}^{+0.8}_{-1.5}$					
$\mu^+\mu^-$		$2.0 \pm 0.5 ^{+0.3}_{-1.4}$					


Displaced vertices ($c\tau \sim 1 \text{ cm}$)

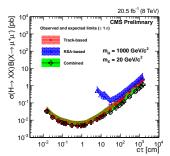
- Displaced vertices (DV) formed from clusters of >5 tracks.
- Dilepton vertices formed from $e^{\pm}e^{\mp}$, $\mu^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\mp}$ pairs.
- Density map of ATLAS used to veto vertices in dense material.

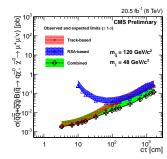

Backgrounds from accidental crossings and

merged vertices taken from data.

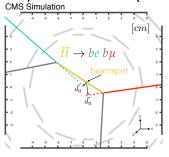


Limits set on several SUSY models.

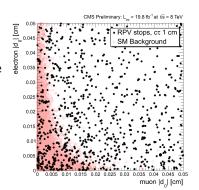


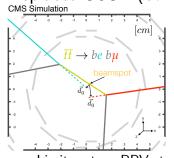

4 / 10

Displaced $\mu\mu$ (muon chambers only) ($c au{\sim}100\,\mathrm{cm}$)



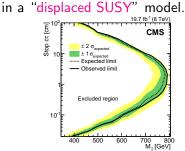
- CMS also looked for dimuon vertices with only muon chambers, vetoing muons matching tracks from the inner tracker.
- Background estimated from candidates in data with anti-aligned momentum and position vectors.
- Zero events predicted and observed; combined with results using inner tracker to set limits on hidden valley scalars (X) and RPV $\tilde{\chi}^0$.

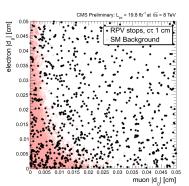

Displaced SUSY ($c\tau \sim 1 \text{ cm}$)


- Isolated $e^{\pm}\mu^{\mp}$ pairs searched for with large transverse impact parameters $(|d_0|)$.
- Leptons from LL particle decays have broad $|d_0|$ distributions.
- No common vertex required.

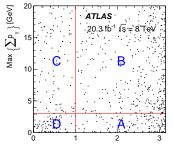
 No excess observed in any of the three signal regions.

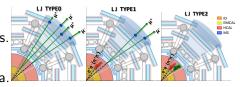
Signal region	Expected	Observed
$ d_0 \in (0.02, 0.05) \mathrm{cm}$	$18.0 \pm 0.5 \pm 3.8$	19
$ d_0 \in (0.05, 0.1) \mathrm{cm}$	$1.01 \pm 0.06 \pm 0.30$	0
$ d_0 \in (0.1, 2) \mathrm{cm}$	$0.051 \pm 0.015 \pm 0.010$	0




Displaced SUSY ($c\tau \sim 1 \text{ cm}$)

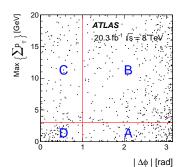
- Isolated $e^{\pm}\mu^{\mp}$ pairs searched for with large transverse impact parameters $(|d_0|)$.
- Leptons from LL particle decays have broad $|d_0|$ distributions.
- No common vertex required.

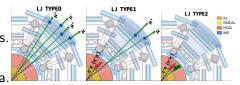

• Limits set on RPV stop pair production



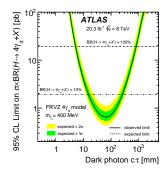
Displaced lepton jets (LJ) ($c\tau \sim 10 \,\mathrm{cm}$)

- Displaced LJs formed by clustering muons and calo. deposits isolated from ID tracks.
- Cosmic background estimated from empty bunch crossing data
- Multijets estimated with data-driven ABCD method.

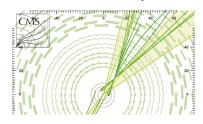


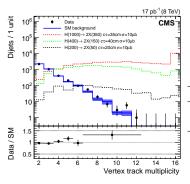

Data well-described by backgrounds.

	All LJ pair types	TYPE2-TYPE2 LJs excluded
Data	119	29
Cosmic rays	$40 \pm 11 \pm 9$	$29 \pm 9 \pm 29$
Multi-jets (ABCD)	$70 \pm 58 \pm 11$	$12 \pm 9 \pm 2$
Total background	$110 \pm 59 \pm 14$	$41 \pm 12 \pm 29$


Displaced lepton jets (LJ) ($c\tau \sim 10 \,\mathrm{cm}$)

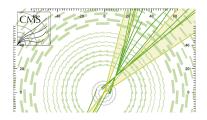
- Displaced LJs formed by clustering muons and calo. deposits isolated from ID tracks.
- Cosmic background estimated from empty bunch crossing data
- Multijets estimated with data-driven ABCD method.

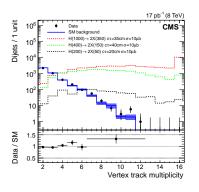




Limits set on dark photons $(\gamma_{\rm d})$.

Displaced dijets ($c\tau \sim 10 \,\mathrm{cm}$)



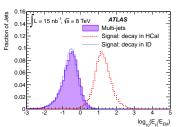


- Displaced vertices formed from tracks in pairs of jets.
- Several variables used to select vertices compatible with signal.
- Multijet background estimated from data with ABCDEFGH method.
- Two sets of selections considered; background describes the data well for both.

	Loose selection	Tight selection
Expected	$1.56 \pm 0.25 \pm 0.47$	$1.13 \pm 0.15 \pm 0.50$
Observed	2	1

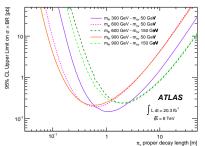
Displaced dijets ($c\tau \sim 10 \, \mathrm{cm}$)

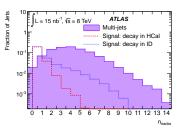
- Displaced vertices formed from tracks in pairs of jets.
- Several variables used to select vertices compatible with signal.
- Multijet background estimated from data with ABCDEFGH method.
- Limits set on hidden valley scalars (X).

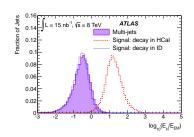

Trackless jets ($c\tau \sim 100 \,\mathrm{cm}$)

- Pairs of trackless jets are used to search for particles decaying in the HCAL.
- No tracks in the ID and little energy in the ECAL.
- Multijet and cosmic backgrounds estimated from data.

Fraction of Jets	10	J.	= 1	5 n	b ⁻¹ ,	√s =		eV		Mult Sigr	nal:				
	10 ⁻¹		-				····1		····		L	4			June - June
	10 ⁻³			ı	٠.	٦.	1	ل	L	<u></u>					
		0	1	2	3	4	5	6	7	8	9	10	11	12	14 racks

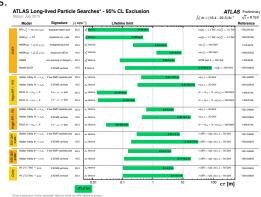

No excess of events observed.

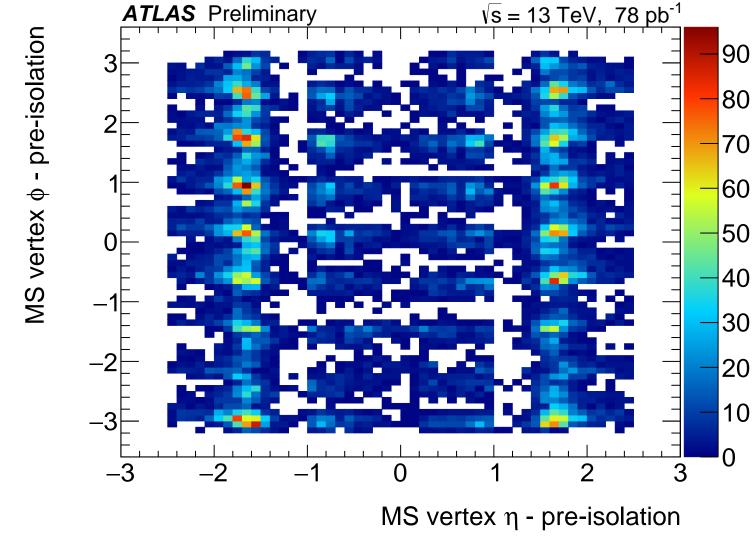

Background	Expected events				
SM Multi-jets	23.2 ± 8.0				
Cosmic rays	0.3 ± 0.2				
Total Expected Background	23.5 ± 8.0				
Data	24				



Trackless jets ($c\tau \sim 100 \, \mathrm{cm}$)

- Pairs of trackless jets are used to search for particles decaying in the HCAL.
- No tracks in the ID and little energy in the ECAL.
- Multijet and cosmic backgrounds estimated from data.
- Limits set on hidden valley pions (π_{v}) .




Conclusion

- ATLAS and CMS have performed several searches for new weakly interacting, LL particles.
- These searches help fill important gaps in coverage left by more traditional searches where new physics could hide.

 Conversely, a future discovery by one of these searches would be a striking sign of new physics.

 Stay tuned for even more exciting results during Run 2!

