

European Physical Society Conference on High Energy Physics 2015

24 July 2015 Vienna, Austria

Combined Measurement of Inclusive e⁺p Scattering Cross Sections at HERA

[arXiv:1506.06042]

Oleksii Turkot DESY

On behalf of H1 and ZEUS Collaborations

Combined Measurement of Inclusive e±p Scattering Cross Sections at HERA

being presented now.

QCD Analysis HERAPDF2.0 of the combined HERA structure function data

Voica Radescu today at 12:15.

QCD Analysis of the combined HERA inclusive data together with HERA jet and charm data

Katarzyna Wichmann today at 12:30.

ZEUS and H1 experiments

HERA is worlds only e*p collider:

operated during 1992 — 2007; e⁺ energy 27.5 GeV; p energies 920, 820, 575 and 460 GeV.

H1 and ZEUS — two collider experiments at HERA:

~ 0.5 fb⁻¹ of luminosity recorded by each experiment.

HERA data provides unique opportunity to study the structure of the proton.

HERA data and the LHC

HERA data covers a large part of the LHC x range.

Evolution in Q² via DGLAP allows to extrapolate HERA PDFs into LHC region.

Inclusive DIS

Neutral Current:

$$\frac{d^{2}\sigma_{NC}^{e\mp p}}{dxdQ^{2}} = \frac{2\pi\alpha^{2} \cdot Y_{\parallel}}{xQ^{4}} \cdot (F_{2}(x,Q^{2}) \pm \frac{Y_{-}}{Y_{\parallel}} \cdot x \cdot F_{3}(x,Q^{2}) - \frac{y^{2}}{Y_{\parallel}} \cdot F_{L}(x,Q^{2}))$$

$$Y_{\pm} = 1 \pm (1-y)^{2}$$

Charged Current:

$$\frac{d^{2}\sigma_{CC}^{e \mp p}}{dxdQ^{2}} = \frac{G_{F}^{2}}{4\pi x} \cdot \kappa^{2} \cdot \left(Y_{\square} \cdot W_{2}^{\mp} \pm Y_{-} \cdot x \cdot W_{3}^{\mp} - y^{2} \cdot W_{L}^{\mp}\right) \kappa = \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}}$$

Inclusive DIS Data Samples

Input data — 41 final data sets with HERA inclusive measurements:

- 21 HERA I data samples
- 20 HERA II data samples, including:
 - 8 inclusive HERA II $E_p = 920 \text{ GeV}$
 - 4 high y data $E_p = 920 \text{ GeV}$
 - 4 high y data $E_n = 575 \text{ GeV}$
 - 4 high y data $E_p = 460 \text{ GeV}$

More than 10 years of data taking: 1994 — 2007.

Total of **2927** data points combined to **1307**.

Q² - x common grids

All data points are swum to common Q² - x grids:

$$\sigma_{\text{meas}}^{e \mp p}(x_{\text{grid}}, Q_{\text{grid}}^2) = \frac{\sigma_{\text{model}}^{e \mp p}(x_{\text{grid}}, Q_{\text{grid}}^2)}{\sigma_{\text{model}}^{e \mp p}(x_{\text{meas}}, Q_{\text{meas}}^2)} \cdot \sigma_{\text{meas}}^{e \mp p}(x_{\text{meas}}, Q_{\text{meas}}^2)$$

1307 grid points cover wide range:

$$0.045 < Q^2 < 50000 \text{ GeV}^2$$

$$6 \cdot 10^{-7} < x_{Bj} < 0.65$$

Swimming procedure

The swimming done iterativaly using our own data.

Averaging of scale factors is performed in dependence on Q².

Averaging procedure

The combination of the data done with HERAverager.

(available at wiki-zeuthen.desy.de/HERAverager).

All **162** correlated systematic sources are treated as multiplicative and the χ^2 definition:

$$\chi^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta_{i, \text{stat}}^{2} \mu^{i} \left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right) + \left(\delta_{i, \text{uncorr}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

Output:

- → 7 data sets for NC and CC e[±]p with 3 CMEs, available at:
 - https://www.desy.de/h1zeus/herapdf20/
- Statistical, uncorrelated and 162 correlated systematic uncertainties;
- → 7 procedural uncertainties ⇒ see additional material.

Averaging results

Good consistensy of data:

$$\chi^2$$
 / ndf = 1685 / 1620

The pulls are defined as:

$$pull^{i,k} = \frac{\mu^{i,k} - m^i}{\sqrt{\Delta_{i,k}^2 - \Delta_{i,ave}^2}}$$

Averaged cross sections: NC e⁺p

H1 and ZEUS

 2927 data points combined to 1307

 up to 8 data points combined to 1

Averaged cross sections: NC e-p

- ~3 times larger luminosity for NC e+p compare to HERA I, and for NC e-p — 10 times!
- Reduced systematic uncertainties due to cross calibration of data from two experiment.
- Combined data accuracy reaches ~1%.

Averaged cross sections: CC e*p

- Many data points are combined into one averaged point
- Kinematic range extended

Low Q² data

Combined inclusive cross sections for low Q² available for two CMEs:

- 300 GeV
- 318 GeV

Interesting for:

- dipole / saturation models;
- study of higher twists.

New CME data: NC etp

Lowered proton beam energies data included

Scaling violations

H1 and ZEUS

Scaling violations introduce a step rise of \widetilde{F}_2 at low x_{Bi} :

Steeper rise for higher Q².

yZ° interference

H1 and ZEUS

Difference in NC e⁺p and e⁻p at high Q²:

- $Q^2 \sim M_Z^2 \Rightarrow \gamma Z^0$ interference clearly seen :
 - In NC e⁺p negative γZ^o
 interference
 - In NC e⁻p positive γZ°
 interference

$xF_3^{\gamma Z}$ from combined data

- $xF_3^{\gamma Z}$ estimated by substracting NC e⁺p and e⁻p cross sections
- Due to weak dependance in Q^2 translated to Q^2 = 1000 GeV² and averaged.

Integrated over x_{Bi}:

 $0.016 < x_{Bi} < 0.725$:

Data: 1.314 ± 0.081

 $0 < x_{Bi} < 1$:

Data: 1.790 ± 0.110

HERAPDF2.0: 1.588 +0.078 -0.100

Theory: $\frac{5}{3}$

Good agreement with theory predictions

Summary

- Combination of all final inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations has been finalized: [arXiv:1506.06042], https://www.desy.de/h1zeus/herapdf20/
- The total luminosity of about 1 fb⁻¹ collected by two separate experiments provides us with cross sections of very high precision.
- Combined HERA I+II data used as an input in QCD analysis.

Additional material

Procedural uncertainties

The combination of the data done with HERAverager.

(available at wiki-zeuthen.desy.de/HERAverager).

All **162** correlated systematic sources are treated as multiplicative and the χ^2 definition:

$$\chi^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta_{i, \text{stat}}^{2} \mu^{i} \left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right) + \left(\delta_{i, \text{uncorr}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

Procedural uncertainties estimated for:

- multiplicative vs additive;
- possible correlations between data sets:
 - photoproduction background;
 - hadronic energy scale;
- investigation of large pulls in combination.

Data samples

H1 ZEUS

Data set		£ [pb⁻¹]	e+ / e-	\sqrt{s} [GeV]	Data set		£ [pb⁻¹]	e+ / e-	\sqrt{s} [GeV]
HERA I E_p = 820 GeV and E_p = 920 GeV data sets									
H1 svx-mb H1 low Q ² H1 NC H1 CC H1 NC H1 CC H1 NC HY H1 NC	95-00 96-00 94-97 94-97 98-99 98-99 98-00 99-00	2.1 22 35.6 35.6 16.4 16.4 16.4 65.2 65.2	e+ p e+ p e+ p e- p e- p e+ p e+ p	301, 319 301,319 301 301 319 319 319 319 319	ZEUS BPC ZEUS BPT ZEUS SVX ZEUS NC ZEUS CC ZEUS NC ZEUS CC ZEUS NC ZEUS CC ZEUS NC ZEUS CC	95 97 95 96-97 94-97 98-99 98-99 99-00	1.65 3.9 0.2 30.0 47.7 15.9 16.4 63.2 60.9	e+ p e+ p e+ p e+ p e+ p e+ p e+ p	300 300 300 300 300 318 318 318 318
HERA II E_p = 920 GeV data sets									
H1 NC H1 CC H1 NC H1 CC H1 NC med Q ² H1 NC low Q ²	03-07 03-07 03-07 03-07 03-07	182.0 182.0 151.7 151.7 97.6 5.9	e+ p e+ p e+ p e+ p e+ p	319 319 319 319 319 319	ZEUS NC ZEUS CC ZEUS NC ZEUS CC ZEUS NC nominal ZEUS NC satellite	06-07 06-07 05-06 04-06 06-07 06-07	135.5 132.0 169.9 175.0 44.5 44.5	e+ p e+ p e+ p e+ p e+ p	318 318 318 318 318 318
HERA II E_p = 575 GeV data sets									
H1 NC high Q ² H1 NC low Q ²	07 07	5.4 5.9	e+ p e+ p	252 252	ZEUS NC nominal ZEUS NC satellite	07 07	7.1 7.1	e⁺ p e⁺ p	251 251
HERA II E_p = 460 GeV data sets									
H1 NC high Q ² H1 NC low Q ²	07 07	11.8 12.2	e+ p e+ p	225 225	ZEUS NC nominal ZEUS NC satellite	07 07	13.9 13.9	e+ p e+ p	225 225