Neutrino oscillation experiments: Future Prospects

Sushant Raut

KTH Royal Institute of Technology, Stockholm

Sushant Raut EPS-HEP 2015, Vienna

Neutrino Oscillations

• Standard three-flavour oscillation framework:

Three mixing angles, two independent mass-squared differences, one CP-violating phase

Known measurements

	Normal Orde	ring $(\Delta \chi^2 = 0.97)$	Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.270 \rightarrow 0.344$	$0.304_{-0.012}^{+0.013}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$ heta_{12}/^{\circ}$	$33.48_{-0.75}^{+0.78}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579_{-0.037}^{+0.025}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$ heta_{23}/^\circ$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2 heta_{13}$	$0.0218^{+0.0010}_{-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219^{+0.0011}_{-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$ heta_{13}/^\circ$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254_{-62}^{+63}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

1409.5439: Gonzalez-Garcia, Maltoni, Schwetz

See also: 1405.7540: Forero, Tortola, Valle 1312.2878: Capozzi et al.

Known measurements

		Normal Ordering $(\Delta \chi^2 = 0.97)$		Inverted Ordering (best fit)		Any Ordering
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.270 \rightarrow 0.344$	$0.304_{-0.012}^{+0.013}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
V	$ heta_{12}/^{\circ}$	$33.48_{-0.75}^{+0.78}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
($\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579_{-0.037}^{+0.025}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
	$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
	$\sin^2 heta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219^{+0.0011}_{-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
✔	$ heta_{13}/^{\circ}$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
($\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254_{-62}^{+63}	$0 \rightarrow 360$	$0 \rightarrow 360$
\checkmark	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.50_{-0.17}^{+0.19}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
•	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

1409.5439: Gonzalez-Garcia, Maltoni, Schwetz

See also: 1405.7540: Forero, Tortola, Valle 1312.2878: Capozzi et al.

Known measurements

		Normal Ordering $(\Delta \chi^2 = 0.97)$		Inverted Ordering (best fit)		Any Ordering
		bfp $\pm 1\sigma$	3σ range	$bfp \pm 1\sigma$	3σ range	3σ range
	$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.304_{-0.012}^{+0.013}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
V	$ heta_{12}/\circ$	$33.48_{-0.75}^{+0.78}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
($\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579_{-0.037}^{+0.025}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
	$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	0 30r→ H30?	$38.3 \rightarrow 53.3$
	$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219\substack{+0.0011\\-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
\checkmark	$ heta_{13}/^\circ$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	$8.51_{-0.21}^{+0.20}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
($\delta_{ m CP}/^{\circ}$	306_{-70}^{+39}	$0 \rightarrow 360$	254^{+63}_{-62}	δ _{CP} ≇ ?	$0 \rightarrow 360$
\checkmark	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
Ţ	$\left(\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}\right)$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.018}_{-0.08}$	+²ŏîr → I ŀł?	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

1409.5439: Gonzalez-Garcia, Maltoni, Schwetz

See also: 1405.7540: Forero, Tortola, Valle 1312.2878: Capozzi et al.

Why do we not know what we don't know?

• Parameter degeneracies: $P(NH, \delta_{CP}) = P(IH, \delta_{CP}')$; $P(\theta_{23}) = P(90-\theta_{23})$

Parameter degeneracies

- Certain combinations of hierarchy and δ_{CP} suffer from degeneracies

	NH	IH
Upper half-plane (UHP): δ _{CP} = (0, 180°)	Degeneracy (Unfavourable)	No degeneracy (Favourable)
Lower half-plane (LHP): $\delta_{\rm CP}$ = (-180° ,0)	No degeneracy (Favourable)	Degeneracy (Unfavourable)

• For octant determination, the favourable and unfavourable combinations are different for neutrinos and antineutrinos

1301.2574: Agarwalla, Prakash, UmaSankar

A chronology of experiments

	Current expts	Upcoming (near future) expts	Future expts
Beam-based	T2K, NOvA, MINOS+		DUNE/LBNF/LBNE, T2HK, ESSnuSB
Atmospheric	SK, MINOS+	ICAL@INO	HK, PINGU
Reactor	D-Chooz, DayaBay, RENO	JUNO, RENO50	
Extra-terrestrial	Antares, IceCube		КМЗИЕТ

time

Far future: Neutrino factory? Beta-beam?

Current experiments

A1: Current expts: Hierarchy

Hierarchy: For favourable combinations of parameters, NOvA and T2K can determine the hierarchy very well

1208.3644: Agarwalla, Prakash, SR, UmaSankar

A2: Current expts: Octant

Octant: Depending on the true parameters, NOvA + T2K may determine the octant

1301.2574: Agarwalla, Prakash, UmaSankar

Current experiments

A3: Current expts: CP

 δ_{CP} : Does the existing T2K data already give a hint for δ_{CP} = -90?

Can we use this hint to draw conclusions about the hierarchy and octant?

	NH	IH	Sum	
$\sin^2\theta_{23} \le 0.5$	0.179	0.078	0.257	
$\sin^2\theta_{23} > 0.5$	0.505	0.238	0.743	
Sum	0.684	0.316	1.0	
1502.01550: Abe et al.				
See also: 1409.5046: Ghosh, Goswami, SR				

Upcoming experiments

B1: Upcoming expts: Hierarchy

NOvA + T2K + reactors + ICAL can improve the hierarchy sensitivity even for unfavourable combinations of parameters

1212.1305: Choubey, Ghosh, Thakore

See also: 1203.3388: Blennow, Schwetz

Reactor experiments like JUNO are also sensitive to the hierarchy through spectral effects

1303.6733: Li, Cao, Wang, Zhan

Upcoming experiments

B2: Upcoming expts: Octant

Adding information from reactors + ICAL can improve the octant sensitivity dramatically

Note the role of the reactors (represented by priors on θ_{13}): synergy between long-baseline and reactor experiments

Upcoming experiments

ICAL does not have any intrinsic CP sensitivity, but it is sensitive to the hierarchy. Thus, it helps the discovery of CP violation indirectly, by breaking the hierarchy- δ_{CP} degeneracy. 1306.2500: Ghosh, Ghoshal, Goswami, SR

Future experiments

Future experiments

Future experiments

 Parameter degeneracies are a major obstacle in determining the unknown neutrino oscillation parameters

- Parameter degeneracies are a major obstacle in determining the unknown neutrino oscillation parameters
- If nature has chosen favourable combinations of the parameters, then the current experiments will be able to determine the hierarchy, octant and maybe the CP phase.

- Parameter degeneracies are a major obstacle in determining the unknown neutrino oscillation parameters
- If nature has chosen favourable combinations of the parameters, then the current experiments will be able to determine the hierarchy, octant and maybe the CP phase.
- If the combinations are unfavourable, the upcoming experiments like ICAL will conclusively determine the hierarchy, and possibly the octant (depending on θ_{23})

- Parameter degeneracies are a major obstacle in determining the unknown neutrino oscillation parameters
- If nature has chosen favourable combinations of the parameters, then the current experiments will be able to determine the hierarchy, octant and maybe the CP phase.
- If the combinations are unfavourable, the upcoming experiments like ICAL will conclusively determine the hierarchy, and possibly the octant (depending on $\theta_{\rm 23}$)
- The discovery of CP violation and a precise measurement of the phase may have to wait until the next generation of experiments like DUNE and ESSvSB.

Some questions for the future

- Is the standard three-flavour oscillation scenario enough? Steriles? NSIs?
- How precise is precise? Look to models for answers?
- Are we motivated enough to invest in new and technologically challenging facilities like neutrino factories and beta beams?
- Statistics: Frequentist vs Bayesian. How should we interpret our chi-squared?
- What other physics can we do with neutrino oscillations? Supernovae, UHE physics, tomography?