▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Dark Matter Self-Interactions via Collisionless Shocks in Cluster Mergers

Christian Spethmann

EPS-HEP Conference,

Vienna, 23.07.2015

based on arXiv: 1504.04371 M. Heikinheimo, M. Raidal, C.S. and H. Veermäe (accepted for publication by PLB)

Contents

Observations

Plasma dynamics

The model

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Observational Evidence, Exhibit A: Bullet Cluster

- The two dark matter halos move through each other.
- The visible gas gets shocked and stays behind.

 \Rightarrow (Most of) dark matter collisionless!

Observational Evidence, Exhibit B: Abell 520

- The visible gas gets shocked and stays behind.
- Microlensing: Excess of dark matter on top of the gas.
- \Rightarrow (some component of) dark matter collisional after all?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observational Evidence, Exhibit C: Abell 3827

- Microlensing: dark matter halos stay behind visible stars.
- \Rightarrow Drag force on dark matter from intracluster medium?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preliminary Conclusions from Evidence

The observations can be explained if:

- Most of dark matter is collisionless (Bullet cluster)
- A subcomponent (10 30 %) of dark matter imitates the visible gas (Abell 520)
- The interacting component is slowed down and stays behind (Abell 3827)
- \Rightarrow The interacting dark matter is a plasma like the visible gas

 \Rightarrow <u>Collisionless Shocks</u>

Contents

Observations

Plasma dynamics

The model

Plasma Physics 101

Some characteristic properties of (astrophysical) plasmas:

- Mix of charge carriers, interacting via long range forces.
- Debye shielding length $\lambda_D = \sqrt{rac{ au}{4\pi lpha n}}$ (here \sim 10 km).
- Physical size > λ_D (bulk interactions dominate over surface effects).
- Collective effects dominate dynamics if $\Lambda = \frac{4\pi}{3} \lambda_D^3 n \gg 1$ (here $\Lambda = 10^{19}$ to 10^{20}).
- Electrostatic interactions dominate over direct $2 \rightarrow 2$ scattering
- Plasma instabilities important (see next slides).

Collisionless Shocks (12min talk cartoon version)

Counter-streaming plasma \Rightarrow plasma instabilities

- \Rightarrow large EM fieds \Rightarrow saturation regime (non-linear)
- \Rightarrow shock waves \Rightarrow energy dissipation

Typical time scale: $\sim 100 \ \omega_p^{-1} = 100 \left(\frac{4\pi\alpha n}{m}\right)^{-1/2}$ [1502.00626 [physics.plasm-ph]].

Are Collisionless Shocks Real?

- Observations of visible astrophysical plasmas:
 - Earth's bow shock
 - Expansion of supernova remnants
 - Galaxy collisions and cluster mergers
- Numerical Studies:
 - Particle in cell (PIC) simulations
- Experimental Studies:
 - electron-positron plasmas
 - ionized gases produced with laser pulses
- Dedicated numerical studies of dark plamas (in progress).

 \Rightarrow YES, and they will affect dark matter dynamics if massless dark force carriers are present.

Contents

Observations

Plasma dynamics

The model

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

A Concrete Model of Dark Plasma

Details of the model:

- 70% of DM generic WIMP, 30% dark plasma.
- One Dirac fermion charged under an unbroken *U*(1) gauge group:

$$\mathcal{L} = \frac{1}{4} F_{D\mu\nu} F_D^{\mu\nu} + \bar{\chi} \left(i \not D - m_D \right) \chi.$$

- No kinetic mixing term $F_{D\mu\nu}F^{\mu\nu}$ (highly constrained).
- Dark matter abundance is produced as thermal relic from annihilation into dark photons, $\bar{\chi}\chi \rightarrow \gamma_D \gamma_D$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observational Constraints (1), BBN

- Big Bang Nucleosynthesis: $N_{\rm eff} < 3.38$
 - \Rightarrow Constrains temperature of dark photons during BBN.
- Dark photon temperature

$$T_D = T_\gamma \left(rac{g_{*s,\gamma}(T_\gamma)g_{*s,D}(T_*)}{g_{*s,D}(T_D)g_{*s,\gamma}(T_*)}
ight)^{1/3},$$

(thermal equilibrium assumed at T_*).

- Constrains number of fermions in the dark sector: $N_D < 2.35$

Observational Constraints (2), CMB/SSS

• <u>Structure formation</u> suppressed until kinetic decoupling of the dark matter and dark radiation, which occurs at

$$T_{\rm kin} = \left(rac{4\pi}{45}g_*
ight)^{rac{1}{4}} \sqrt{rac{135}{64\pi^3}} rac{m_D^{rac{3}{2}}}{\sqrt{m_P}lpha_D}$$

- If $T_{\rm kin} > 640$ eV, only multipoles above l > 2500 are affected in the <u>CMB</u>, and thus temperatures above this limit are unconstrained by PLANCK.
- For $T_{\rm kin} \approx 500$ eV the small scale structure is suppressed for structures below the size of $\sim 10^9 M_{\odot}$, alleviating the missing satellites problem.

イロト 不得 トイヨト イヨト

э

Exclusion plot: DM mass vs. coupling constant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook: Where to go from here?

- Conflicting observations of different cluster mergers, low resolution of weak lensing mass reconstruction
 - \Rightarrow More <u>observations</u> required!
- Effects of dark plasma dynamics on galactic and cluster halos, structure formation etc.

 \Rightarrow More <u>simulations</u> required!

- Natural explanation for the partially interacting dark matter scenario, *e.g.* partially ionized dark atoms?
 - \Rightarrow More modelbuilding required!

The Minimal Take Home Message

- 1. Collisionless shocks dictate the dynamics of rare astrophysical plasmas.
- 2. <u>Dark matter</u> coupled to <u>dark radiation</u> behaves the same way.
- 3. Considering only 2 \rightarrow 2 scattering is in this case not adequate.

For the full story: 1504.04371