## Top quark couplings at the FCC



The FCC-ee: The top-quark electroweak couplings

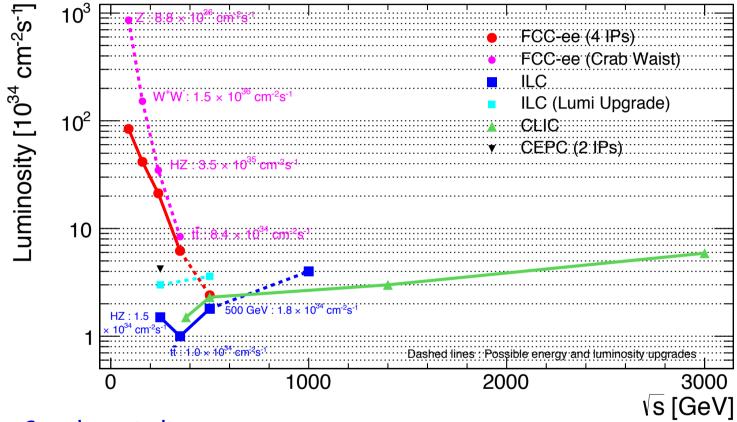
The physics programme of the FCC-ee

Measuring the top electroweak couplings at the FCC-ee

Sensitivity to new physics

#### The FCC-hh: The top-quark Yukawa coupling

Motivation and expected statistical accuracy


Minimizing the systematic uncertainties with FCC-ee measurements

#### Conclusion

HEP-EPS Vienna 25 July 2015

## The physics programme of FCC-ee (1)

#### Performance targets for luminosity



- Complementarity
  - Ultimate precision measurements with circular colliders (FCC-ee)
  - Ultimate e<sup>+</sup>e<sup>-</sup> energies with linear colliders (CLIC)

## The physics programme of FCC-ee (2)

- A very rich physics menu!
  - Core physics programme

See arXiV:1308.6176, "First Look at the Physics Case of TLEP" FCC-ee physics meetings, https://indico.cern.ch/category/5259/

• The Z pole scan,  $\sqrt{s} = 88-95$  GeV

See also A. Blondel's poster

- M. Dam's talk
- $\rightarrow$  m<sub>7</sub>,  $\Gamma_7$  to < 100 keV,  $\sin^2\theta_W$  to 5×10<sup>-6</sup>,  $\alpha_{OFD}(m_7)$  to 2×10<sup>-5</sup>,  $\alpha_s(m_7)$  to 2×10<sup>-4</sup>, ...
- ➡ Rare decay/process searches and flavour physics with up to 10<sup>13</sup> Z
- The WW threshold scan,  $\sqrt{s} = 160-165$  GeV
- M. Dam's talk
- $\rightarrow$  m<sub>w</sub> to 300 keV,  $\alpha_s(m_7)$  to 10<sup>-4</sup>, ...
- The Higgs factory,  $\sqrt{s} = 240$  GeV and above
- M. Klute's talk
- ➡ Improve HL-LHC precision on Higgs couplings by an order of magnitude
- → Measure the Higgs width to better than 1%, and BR<sub>invis</sub> to 0.1%
- The top threshold scan,  $\sqrt{s} = 340-350 \text{ GeV}$
- M. Dam's talk
- → m<sub>ton</sub> to 10-20 MeV

Well matched to FCC-hh discovery range

- Set constraints on new physics scale to 100 (10) TeV if weakly (Higgs) coupled
  - → Possibly discover very-weakly-coupled new physics through rare processes
- And also ...

This talk

- Top electroweak couplings at  $\sqrt{s} = 365-370$  GeV (as part of the top threshold scan)
- M. Klute's talk The Hee coupling at  $\sqrt{s} = 125 \text{ GeV}$ 
  - The highest centre-of-mass energy  $\sqrt{s} = 500$  GeV (physics case?)

## The physics programme of FCC-ee (3)

Time needed to achieve this ambitious programme

Top couplings?

Number of events expected for each year of running at the FCC-ee

| √s (GeV)                    | 90 (Z)               | 160 (WW)            | 240 (HZ)            | 350 (tt)            | 350+ (WW→H)         |
|-----------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Lumi (ab <sup>-1</sup> /yr) | 86.o                 | 15.2                | 3.5                 | 1.0                 | 1.0                 |
| Events/year                 | 3.7×10 <sup>12</sup> | 6.1×10 <sup>7</sup> | 7.0×10 <sup>5</sup> | 4.2×10 <sup>5</sup> | 2.5×10 <sup>4</sup> |

- Number of years needed to complete the core programme  $N_7=10^{(12)13}$ 1 year =  $10^7$  s # years (0.3)2.50.5 1
  - The FCC-ee core programme can be completed in about 8 to 10 years
  - Today, comparisons will be made with the design "H20" scenario for the ILC | R. Poeschi's talk

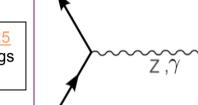
LC = 500 fb<sup>-1</sup> @ 500 GeV (4y), 200 fb<sup>-1</sup> @ 350 GeV (1y), 500 fb<sup>-1</sup> @ 250 GeV (3y)

See arXiV:1506.07830 "ILC Operating Scenarios" with ±80% / ±30% polarization for e<sup>-</sup>/e<sup>+</sup> beams (\*) Optional : 100 fb<sup>-1</sup> @ 90 GeV (~2y?), 500 fb<sup>-1</sup> @ 160 GeV (~3y?)

| ~ 13 years              |   |
|-------------------------|---|
| $1 y = 1.6 \times 10^7$ | S |

| Events@ILC   | 3×10 <sup>9 (*)</sup> | 2×10 <sup>6 (*)</sup> | 1.4×10 <sup>5</sup> | <b>10</b> <sup>5</sup> | 3.5×10 <sup>4</sup> |
|--------------|-----------------------|-----------------------|---------------------|------------------------|---------------------|
| ILC @ FCC-ee | < 1 day               | < 1 week              | 1 month             | 2 months               | 1 year              |

About one year is needed at the FCC-ee to complete the full ILC precision physics programme


## Top Electroweak Couplings at FCC-ee

- This measurement was originally not part of the FCC-ee core programme
  - Indeed, the measurement of the top electroweak couplings was claimed

ILC TDR

- To require  $\sqrt{s}$  significantly above the top threshold
- To require incoming beam polarization
- This claim was recently revisited for FCC-ee

arXiV:1503.01325 "Top EW Couplings at the FCC-ee"



- With no incoming beam polarization
- With a centre-of-mass energy limited to  $\sqrt{s} < 500 \text{ GeV}$



- At FCC-ee, the final state top quarks are produced with non-zero polarization (ttZ)
  - The top polarization (and the total rate) depend on the  $ttZ/\gamma$  couplings
  - The top polarization is maximally transferred to the top decay products  $t \rightarrow Wb$ 
    - → Affect the energy and angular distributions of these decay product Similar to  $\tau$  polarization in  $Z \rightarrow \tau^+\tau^-$  events at LEP
- Today, examine the lepton energy and angular distributions from semi-leptonic events

$$e^+e^- \rightarrow t \, \overline{t} \rightarrow \ell \nu b \, \overline{b} \, q \, \overline{q}$$
 as a function of  $\sqrt{s}$ 

## Lepton energy and angular distributions

Parameterization of the ttV vertex (V = Z, γ)

2

B. Grzadkowski, Z. Hioki, hep-ph/0004223

$$\Gamma^{\mu}_{vt\bar{t}} = \frac{g}{2} \bar{u}(p_t) \left[ \gamma^{\mu} \left\{ A_v + \delta A_v - (B_v + \delta B_v) \gamma_5 \right\} + \frac{(p_t - p_{\bar{t}})^{\mu}}{2m_t} (\delta C_v - \delta D_v \gamma_5) \right] v(p_{\bar{t}}) \right]$$

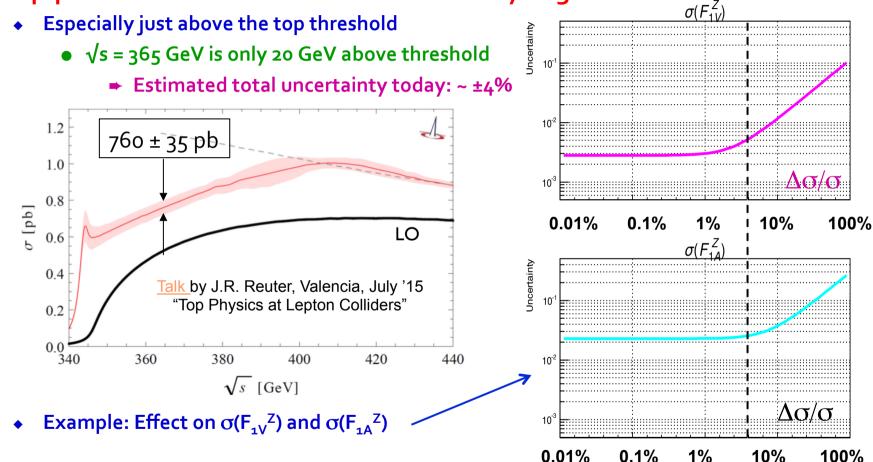
$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \mathrm{d}\cos\theta} = \delta A_{\gamma} \times \left\{ \begin{array}{c} \delta A_{\gamma} \times \left\{ A_{\gamma} \times \left\{ A_{\gamma} \times \left\{ \begin{array}{c} \delta A_{\gamma} \times \left\{ A_{\gamma} \times$$

## Statistical accuracy on anomalous couplings

- $\Box$  From a likelihood fit to the lepton angular/energy distributions (+  $\sigma_{tot}$ )
  - ◆ FCC-ee benefits from large integrated luminosity: ~2.6 ab<sup>-1</sup> in 3 years at  $\sqrt{s}$  = 365 GeV
    - 1.6 million top pairs in 3 years at FCC-ee
      - **→** To be compared to 400,000 top pairs with 500 fb<sup>-1</sup> at  $\sqrt{s}$  = 500 GeV
      - Compensates for the lack of incoming beam polarization
  - Absolute resolutions expected at FCC-ee with leptons only, or with b jets only
    - Under the same hypotheses as in Roman Poeschl's presentation

$$gA_{\gamma,Z} = 2e(F_{1V}^{\gamma,Z} + F_{2V}^{\gamma,Z})$$

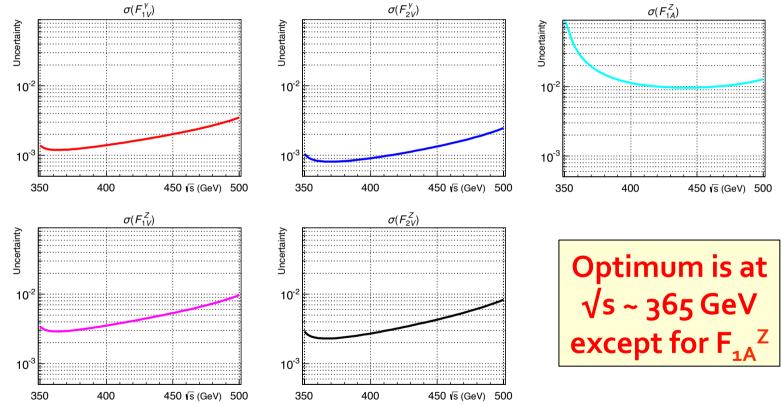
$$gB_{\gamma,Z} = 2eF_{1A}^{\gamma,Z}$$


$$gC_{\gamma,Z} = 2eF_{2V}^{\gamma,Z}$$

| Coupling | $\sigma(F_{1V}^{\gamma})$ | $\sigma(F_{1V}^{Z})$ | $\sigma(F_{\mathtt{1}A}^{\gamma})$ | $\sigma(F_{1A}^{Z})$ | $\sigma(F_{2V}^{\gamma})$ | $\sigma(F_{2V}^{Z})$ |
|----------|---------------------------|----------------------|------------------------------------|----------------------|---------------------------|----------------------|
| Leptons  | 1.1×10 <sup>-3</sup>      | 2.8×10 <sup>-3</sup> | 1.2×10 <sup>-2</sup>               | 2.3×10 <sup>-2</sup> | 0.8×10 <sup>-3</sup>      | 2.2×10 <sup>-3</sup> |
| b jets   | 1.2×10 <sup>-3</sup>      | 5.7×10 <sup>-3</sup> | 1.5×10 <sup>-2</sup>               | 1.1×10 <sup>-2</sup> | 1.2×10 <sup>-3</sup>      | 5.7×10 <sup>-3</sup> |

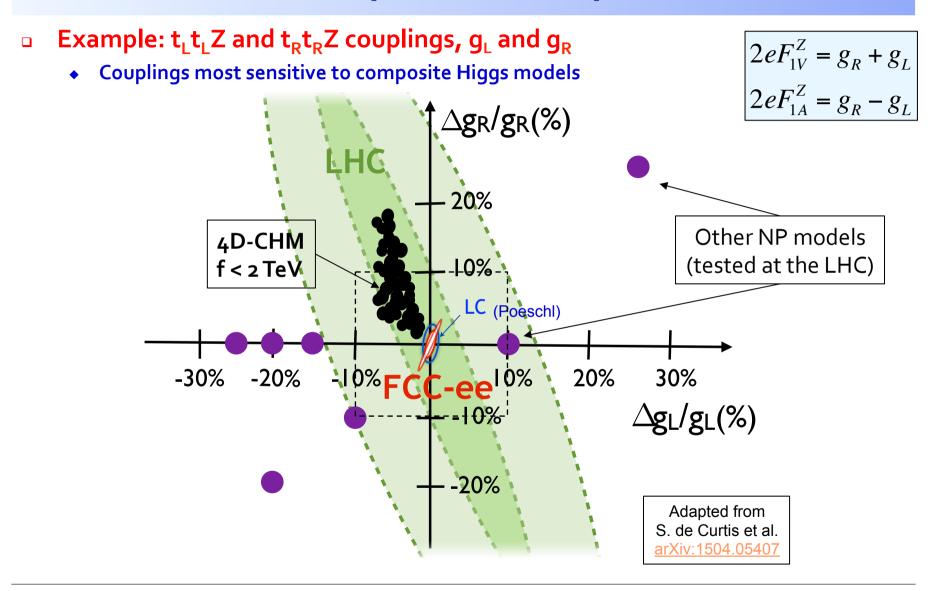
- Very conservative lepton ID efficiencies and angular / momentum resolutions were used
  - A full simulation study is needed to confirm b-jets numbers
    - → In progress as we speak: will allow leptons and b-jets to be combined

## Dominant systematic uncertainty : σ<sub>tot</sub>

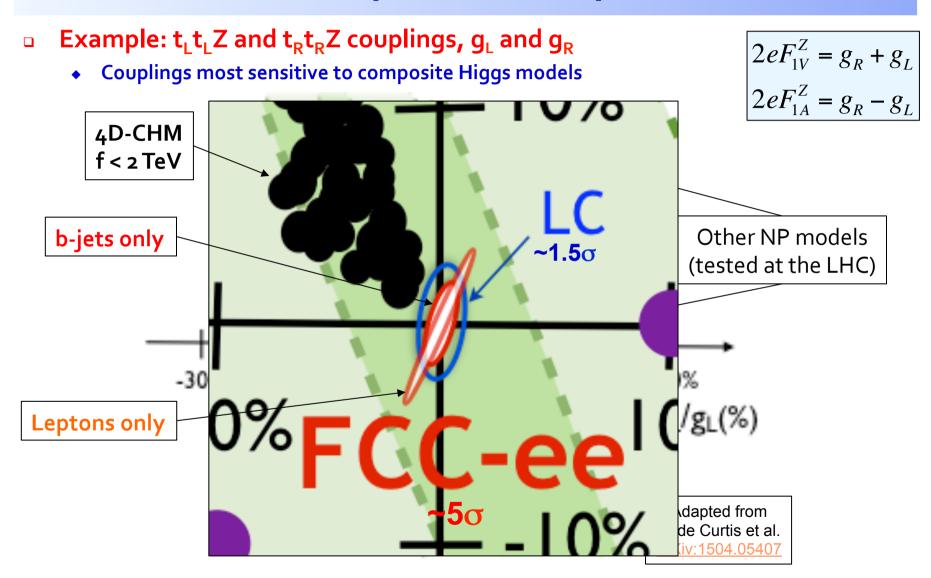

Top-pair cross section theoretical uncertainty might be sizeable



- ◆ The theoretical prediction of the top-pair cross section must be controlled to a few %
  - We are almost there today what will it be when FCC-ee runs at √s = 365 GeV (~2040)?

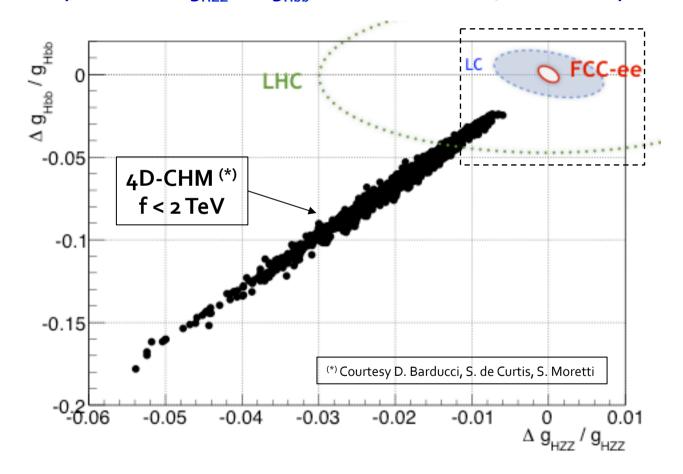

# What about larger √s?

- □ FCC-ee can in principle reach  $\sqrt{s} = 500$  GeV with three times more RF
  - Three years at 365 (500) GeV are worth 2.6 ab⁻¹ (500 fb⁻¹) See slide 2.
    - Evolution of the absolute resolutions expected at FCC-ee as a function of  $\sqrt{s}$ :



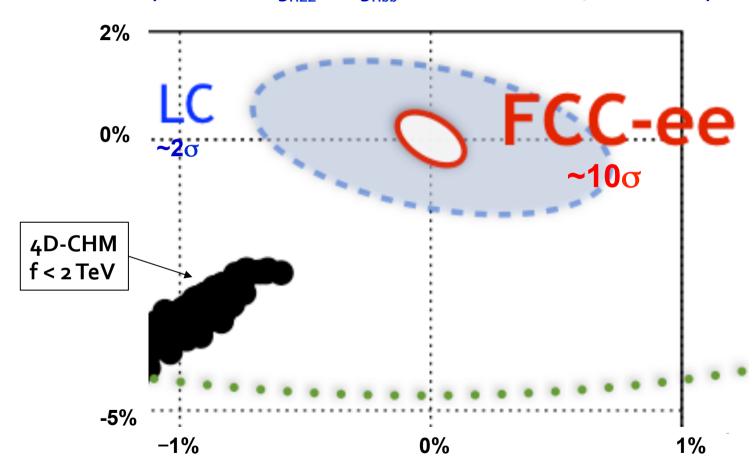

No physics case (at least from top studies) justifying a larger centre-of-mass energy

## Sensitivity to New Physics (1)




## Sensitivity to New Physics (1)



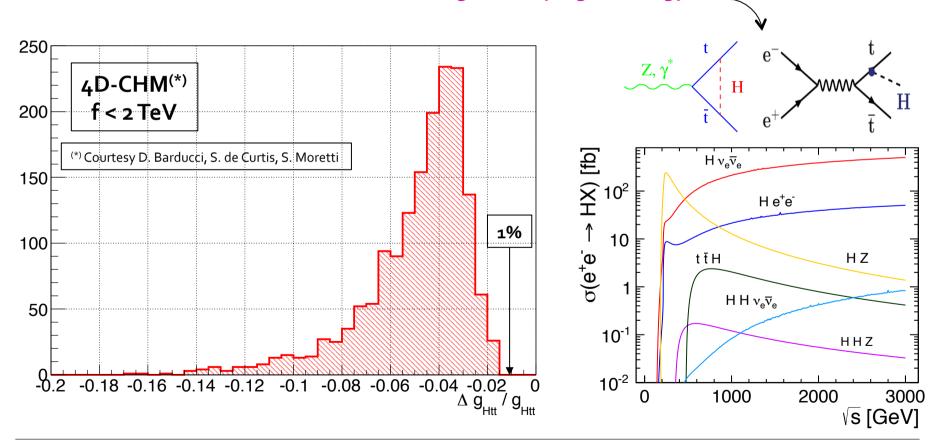

## Sensitivity to New Physics (2)

- Composite Higgs models also affect Higgs couplings
  - ◆ Example: Effect on g<sub>HZZ</sub> and g<sub>Hbb</sub> for the same set of 4D-HCM as in previous slide



### Sensitivity to New Physics (2)

- Composite Higgs models also affect Higgs couplings
  - ullet Example: Effect on  $g_{HZZ}$  and  $g_{Hbb}$  for the same set of 4D-HCM as in previous slide




• Better separation from the standard model than with the ttZ couplings

## The top Yukawa coupling (1)

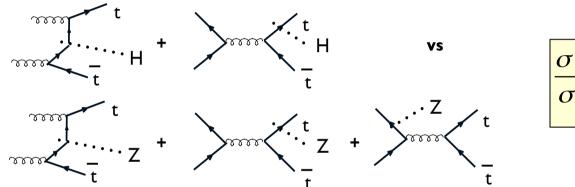
- New physics is also expected to show up in the ttH coupling
  - For our set of Higgs composite models, effect of the same size as for Hbb
    - Would need a ttH coupling measurement with a precision much better than 1%

**→** A case for e<sup>+</sup>e<sup>-</sup> collisions at significantly higher energy?



## The top Yukawa coupling (2)

- Measurement already possible at FCC-ee with the top threshold scan
  - ◆ But the accuracy on the ttH coupling limited to ~10%
- FCC-hh, as ultimate goal for the FCC, is much better suited


| Parameter                                                       | LHC             | HL-LHC  | FCC-hh                                   |  |          |
|-----------------------------------------------------------------|-----------------|---------|------------------------------------------|--|----------|
| √s (TeV)                                                        | 14              |         | 100                                      |  |          |
| Circumference (km)                                              | e (km) 26.7     |         | 26.7                                     |  | 100 (80) |
| Dipole field (T)                                                | 8               | 16 (20) |                                          |  |          |
| Luminosity (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 1               | 5       | 5 [→ <b>30</b> ]                         |  |          |
| Integrated Lumi (ab <sup>-1</sup> )                             | 0.3             | 3       | 3 [→ <b>30</b> ]                         |  |          |
| Bunch spacing (ns)                                              | 25              |         | 25 { <b>5</b> }                          |  |          |
| Events / bunch crossing 35                                      |                 | 140     | 170 {34} [→ <b>1020</b> { <b>204</b> } ] |  |          |
| Total SR Power (MW)                                             | 0.007           | 0.015   | 5 [→ 30]                                 |  |          |
| $\sigma(gg \rightarrow ttH)$                                    | o.62 pb o.62 pb |         | 37.8 pb (10 <sup>9</sup> events)         |  |          |

- Precision at LHC (Run1) ~ 50%
  - Statistical precision not an issue for FCC-hh (~0.1%)

## The top Yukawa coupling (3)

#### ttH coupling @ FCC-hh

- Measurement of  $\lambda_{+}$  with  $\sigma(ttH)$  /  $\sigma(ttZ)$ , with H  $\rightarrow$  ZZ, WW,  $\tau\tau$  (and bb,  $\gamma\gamma$ )
  - Very similar production mechanism, gg production dominant



$$\frac{\sigma(ttH)}{\sigma(ttZ)} \approx \frac{\lambda_t^2}{\left(F_{1V}^Z\right)^2 + \left(F_{1A}^Z\right)^2}$$

- Most theory uncertainties cancel: < 1% precision possible on  $\sigma(ttH)$  /  $\sigma(ttZ)$ 
  - **→** Denominator given by FCC-ee with a precision of 1.5%
  - → Higgs boson BR's given by FCC-ee with a precision of a few 0.1%
- Summary (together with Higgs self-coupling @ FCC-hh with gg → HH → bbγγ)

| Collider      | HL-LHC | LC  | LC 1-3TeV | FCC-ee+hh |
|---------------|--------|-----|-----------|-----------|
| $\lambda_{t}$ | 4%     | 14% | 2-4%      | <1%       |
| $\lambda_{H}$ | 50%    | 83% | 10-15%    | 5%        |

### **Summary**

- The top electroweak couplings can be precisely<sup>(\*)</sup> measured at the FCC-ee
  - A centre-of-mass energy of 365 GeV is optimal
  - Large integrated luminosity more than compensates the lack of beam polarization
- The top Yukawa coupling can be precisely<sup>(\*)</sup> measured at the FCC-hh
  - In combination with the the Higgs and top EW couplings
    - Precisely<sup>(\*)</sup> measured at the FCC-ee
- Sensitivity to new physics is to be evaluated with a global fit
  - ◆ To the measured Z, W, H and top properties at the FCC-ee and FCC-hh
    - Indeed, anomalous top couplings also affect Z and W at quantum level

The combination of FCC-ee and the FCC-hh offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market.

(\*) to 1% or better