

Precision Electroweak Measurements at the Future Circular e⁺e⁻ Collider

Mogens Dam Niels Bohr Institute Copenhagen

On behalf of the FCC-ee study group

EPS-HEP 2015 - Vienna/Austria July 2015

Picture and slide layout, courtesy Jörg Wenninger

Electroweak Precision Tests (EWPT)

Historically EWPT have been instrumental in predicting/determining free parameters of the SM

- 1989-1995:
 - i. top mass predicted (LEP: mostly M_2 , Γ_2)
 - ii. top quark discovered at predicted mass (Tevatron)
- 1995-2012:
 - i. Higgs boson mass constrained (LEP: H, M_Z etc; ____ Tevatron: m_t , M_W)
 - ii. Higgs boson discovered with consistent mass (LHC)

Now, with the Higgs discovered, all SM particles are known

- There are no free knobs left to turn
- New target of EWPT: BSM Physics
 - Do all measurements show consistency?
 - Not known exactly how BSM physics would show up
 - ➤ Improve precision of all EW parameters!

Future Circular Collider Study

With the discovery of the relatively light Higgs boson in 2012, it became clear that a high luminosity circular e⁺e⁻ machine would constitute the optimal Higgs factory.

The study of this machine, now forms part of the

- International FCC collaboration to study
 - pp-collider (FCC-hh)
 - e⁺e⁻ collider (FCC-ee)
 - > p-e (FCC-he)
- 80-100 km infrastructure in Geneva area
- Goal: CDR and cost review by 2018 (ESU)

FCC-ee Program

Provide highest possible luminosity over a wide energy range by exploiting b-factory technologies:

- separate e⁻ and e⁺ storage rings
- very strong focussing: $\beta_v^* = 1$ mm
- top-up injection
- crab-waist crossing

	z	W	н	top
√s [GeV]	90	160	240	350
Physics Objective	10 ¹² (10 ¹³) Z	10 ⁸ WW	2x10 ⁶ HZ	10 ⁶ ttbar

Higgs: M.Klute's talk

top couplings: P. Janot's talk

TeraZ: Z Resonance

- High precision Z lineshape measurement by accumulating 10¹² Z boson decays in an energy scan
- At LEP, reached precision O(2 MeV) on M_Z and Γ_Z . Gained experience on centre-of-mass energy determination with resonant depolarization
- At FCC-ee, potential to reach precision of <100 keV on M_Z and Γ_Z
- Improve measurement of branching ratios, e.g. R_l and R_b , and related $\alpha_s(M_Z)$ determination

Beam energy calibration via depolarization

Resonant depolarization

- use naturally occurring transverse beam polarization
- add fast oscillating horizontal B field to depolarize at Thomas precession frequency

Experience from LEP: Depolarization resonance very narrow: ~100 keV precision for each measurement

- However, final systematic uncertainty was 1.5 MeV due to transport from dedicated polarization runs
- At FCC-ee, continuous calibration with dedicated bunches: no transport uncertainty

Scaling from LEP experience:

Polarization expected up to the WW threshold

< 100 keV beam energy calibration at Z peak and at WW threshold

TeraZ: Asymmetries and $sin^2\theta_W$

- Longstanding differences between different asymmetry measurements. Must be sorted out.
- LEP asymmetry measts. dominated by statistics
 - A_{ER}^{II} , $A_{I}(P_{T})$, A_{ER}^{bb} , A_{ER}^{cc}
- Large precision gain foreseen from O(10⁵) larger stats
- Study of A_{FB}^{μμ} alone indicates factor 50 improvement compared to LEP
 - Matching uncertainties from stats. and beam energy syst. (assumed 100 keV)
- Study of A_{FB}^{0,b} alone indicates gain of factor O(10)
- Potential of other asymmetries to be studied
 - e.g. P_{T}
- Also, investigate A_{LR} with long polarized beam option
 - Beam energy calibration influenced by spin rotators?

Still early days: much work ahead ...

OkuW: WW threshold scan

Precise W mass measurement from 10⁸ events in WW threshold scan

Potential to reach 500 keV with precise E_{beam}
determination via resonance depolarization at
80 GeV

Also revisit the LEP2 method of direct mass reconstruction

Precise measurement of branching fractions:

- R_e , R_u , vs. R_τ : 3 σ diffence left over from LEP
- R_l , R_{had} : Extraction of $\alpha_s(M_W)$

MegaTop: ttbar threshold scan

- Top mass measurement: Advantage of very low level of beamstrahlung
- Could potentially reach 10 MeV uncertainty (stat) on m_{top} (10⁶ ttbar pairs)
 - Comparing ILC and FCCee assuming identical detector performance

Simulated data points - same integrated luminosity

NB: Assuming unpolarized beams - LC beams can be polarized, increasing cross-sections / reducing backgrounds

From Frank Simon, presentation at the 7th FCC-ee workshop, CERN, June 2014

Potential of $\alpha_{OED}(m_z)$ measurement (1)

For exploitation of precision EW measurements, need precise knowledge of $\alpha_{QED}(m_z)$

- Standard method involves extrapolation from $\alpha_{OED}(0)$ to $\alpha_{OED}(m_z)$
 - Dispersion integral over hadronic cross section low energy resonances: $\delta \alpha / \alpha = 1.1 \times 10^{-4}$

$$\alpha_{QED}^{-1}(m_Z) = 128.952 \pm 0.014$$

New idea: exploit large statistics of FCC-ee to measure $\alpha_{QED}(m_z)$ directly close to m_z

Extrapolation error becomes negligible!

Two methods considered: Meast. of cross section, $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$, and asymmetry, $A_{FB}^{\mu\mu}$

- γ exchange proportional to $\alpha^2_{QED}(\sqrt{s})$
- Z exchange independent of $\alpha_{OFD}(Vs)$
- γ Z interference proportional to $\alpha_{QED}(\sqrt{s})$

P. Janot: FCC-ee Physics Vidyo Meeting, June 29th 2015

Potential of $\alpha_{QED}(m_z)$ measurement (2)

From σ_{uu} measurement

- Sensitivity best "far" away from Z peak, particularly at the low side
- Systematics (normalisation) probably a killer

From $A_{FB}^{\ \mu\mu}$ measurement

- Sensitivity best at 88 and 95 GeV
- Experimental systs. looks controlable; further studies needed
- Theoretical systs. to large degree cancel by "averaging" over 88 and 95 GeV point

By running six months at each of 88 and 95 GeV points:

 \triangleright Could potentially reach a precision of : $\delta\alpha/\alpha = 2 \times 10^{-5}$

Strong coupling constant, $\alpha_s(m_Z)$

At LEP, a precise $\alpha_s(m_Z)$ measurement was derived from the Z decay ratio $R_I = \Gamma_{had}/\Gamma_I$. Reinterpreting this measurement in light of: i) new N_3LO calculations; ii) improved m_{top} ; and iii) knowledge of the m_{Higgs} , the uncertainty is now something like:

$$\delta (\alpha_s(m_Z))_{LEP} = \pm 0.0038 \text{ (exp.)} \pm 0.0002 \text{ (others)}$$

R_I measurement was statistics dominated: Foresee a factor ≥25 improvement at FCC-ee. From the Z-pole, therefore a resonable experimental target is

$$\delta (\alpha_s(m_Z))_{FCC-ee} = \pm 0.00015$$

Similarly, from the WW threshold, $\alpha_s(m_W)$ can be derived from the high stats measurement of $B_{had} = (\Gamma_{had}/\Gamma_{tot})_W$

$$\delta (\alpha_s(m_W))_{FCC-ee} = \pm 0.00015$$

Combining the two above, a realistic target precision would be

$$\delta (\alpha_s(m_Z))_{FCC-ee} = \pm 0.0001$$

Neutrino counting

At the end of LEP:

$$N_v = 2.984 \pm 0.008$$

Could this be pointing to non-unitarity of the PMNS matrix?

Determined from the Z line-shape scan:

- Dominated by the theoretical uncertainty on normalization, i.e. on small angle Bhabha cross section ($\div 0.0046$ on N_v).
- Unlikely to be improved substantially.

Alternate method:

Given the very high luminosity, the following measurement can be performed

$$N_{v} = \frac{\frac{\gamma Z(inv)}{\gamma Z \to ee, \mu\mu}}{\frac{\Gamma_{v}}{\Gamma e, \mu} (SM)}$$

Common γ tag allows cancellations of systematics due to photon selection, luminosity, etc. Theory uncertainty on Γ_{ν}/Γ_{e} (SM) is very small.

Point suggested in order to measure e⁺e⁻ -> H process directly; see M. Klute's talk

Selected set of FCC-ee precision observables

Experimental uncertainties mostly of systematic origin

- So far, mostly conservatively estimated based on LEP experience
- Work ahead to establish more solid numbers

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Γ _z (MeV)	Lineshape	2495.2 ± 2.3	0.008	< 0.1	QED corr.
R _I	Peak	20.767 ± 0.025	0.0001	< 0.001	Statistics
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00006	g -> bb
N _ν	Peak	2.984 ± 0.008	0.00004	0.004	Lumi meast.
$A_{FB}^{\;\mu\mu}$	Peak	0.0171 ± 0.0010	0.000004	<0.00001	E _{beam} meast.
$\alpha_s(m_z)$	R _I	0.1190 ± 0.0025	0.000001	0.00015	New Physics
m _w (MeV)	Threshold scan	80385 ± 15	0.3	<1	QED corr.
N _v	Radiative return e⁺e⁻ -> <mark>y</mark> Z(inv)	2.92 ± 0.05 2.984 ± 0.008	0.0008	< 0.001	?
$\alpha_s(m_W)$	$B_{had} = (\Gamma_{had}/\Gamma_{tot})_{W}$	B _{had} = 67.41 ± 0.27	0.00018	0.00015	CKM Matrix
m _{top} (MeV)	Threshold scan	173200 ± 900	10	10	QCD (~40 MeV)

Generally better by factor ≥ 25

EWPT new target: BSM Physics

Standard Model has no free knobs left to turn:

=> Any deviations between measurements would point to New Physics

Presence of New Physics could dramatically change this picture

Sensitivity to New Physics

- Higher-dimensional operators as relic of new physics?
 - Possible corrections to the Standard Model Lagrangian

$$\begin{split} L_{\text{eff}} &= \mathring{\bigcirc} \frac{\mathcal{C}_{n} V^{2}}{L^{2}} O_{n} \\ \mathcal{O}_{R}^{e} &= (i H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{e}_{R} \gamma^{\mu} e_{R}) \\ \mathcal{O}_{LL}^{(3)l} &= (\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}) (\bar{L}_{L} \sigma^{a} \gamma_{\mu} L_{L}) \\ \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a} \\ \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \end{split}$$

LEP constraints: $\Lambda_{NP} > 10$ TeV

After FCC-ee: $\Lambda_{NP} > 100 \text{ TeV}$?

Sensitivity to Weakly-coupled NP

J. Ellis, T. You, see e.g. 8th FCC-ee Workshop, Paris, Oct. 2014

FCC-ee Outlook

- Extremely rich physics program: The FCC-ee will enable very high precision measurements of electroweak observables at the Z pole, at the WW threshold, and at the ttbar threshold
- Exploration of the physics potential is ongoing
- New exciting ideas are appearing at a steady pace
- An important program of precision calculations will be necessary to match the experimental potential
- Many opportunities to contribute!
- Join us at http://cern.ch/FCC-ee

Backup...

Beam Energy Spread

Non-destructive focusing and collision of beams:

- Center-of-mass energy spread by construction modest

How to increase luminosity w.r.t. LEP

Employ B-factory design to gain factor ~500 w.r.t. LEP: Low vertical emittance combined small value of β^*_y (very strong focussing in vertical plane):

- Electrons and positrons have a much higher chance of interacting
- Very short beam lifetimes (few minutes)
- > Top-up injection: feed beam continuously with an ancillary accelerator

Two separate beam pipes for e^+ and e^- to avoid collisions away from IPs Hence, a total of three beam pipes

The forward-backward asymmetry A_{FB}^{μμ}

A measurement potentially free of theory error

- Self normalized
- Lots of uncertainties cancel in the ratio
 - Including experimental uncertainties

$$A_{FB}^{\mu\mu} = \frac{N_F^{\mu\mu} - N_B^{\mu\mu}}{N_F^{\mu\mu} + N_B^{\mu\mu}}$$

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{OFD} (1)

- Assume we can measure $A_{FB}^{\mu\mu}$ with a precision $\delta A_{FB}^{\mu\mu}$ at a given \sqrt{s}
 - The asymmetry can be parameterized as a function of α_{OFD} as follows

$$A_{FB}^{\mu\mu}(\alpha) \propto \frac{\dfrac{lpha}{lpha_0} I(lpha_0)}{z + \dfrac{lpha^2}{lpha_0^2} \gamma(lpha_0)}$$

- Where I, z, and γ are the interference and the Z/ γ exchange terms ($\alpha = \alpha_0$)
- Hence $\delta A_{FB}^{\mu\mu} \propto \frac{I(z-\gamma)}{\sigma_{m}^2} \frac{\delta \alpha}{\alpha}$ or $\frac{\delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu\mu}} = \frac{z-\gamma}{\sigma} \frac{\delta \alpha}{\alpha}$

$$\frac{\delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu\mu}} = \frac{z - \gamma}{\sigma_{\mu\mu}} \frac{\delta \alpha}{\alpha}$$

- No dependence on α_{OFD} when Z and γ exchange are equal
 - i.e., when the interference is maximal : $\sqrt{s} = 78$ GeV and $\sqrt{s} = 114$ GeV
- No dependence on α_{OED} when the interference term / the asymmetry vanishes
 - i.e., at the Z pole: $\sqrt{s} = m_7$
- Relative sign of δA_{FB} and $\delta \alpha$ changes at these three values of \sqrt{s}
 - Important remark when it comes to evaluate systematic uncertainties (see later)

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{QED} (2)

□ Sensitivity quite dependent on √s

Best just above and just below the Z pole

Potential of $\alpha_{QED}(m_z)$ measurement

For exploitation of precision EW measurements, need precise knowledge of $\alpha_{QED}(m_z)$

- Standard method involves extrapolation from $\alpha_{QED}(0)$ to $\alpha_{QED}(m_z)$
 - Dispersion integral over hadronic cross section low energy resonances: $\delta \alpha / \alpha = 1.1 \times 10^{-4}$
- New idea: exploit large statistics of FCC-ee to measure $\alpha_{OED}(m_z)$ directly close to m_z
 - Avoid extrapolation error!

Two methods considered:

- i. From $\sigma_{\mu\mu}$
 - Sensitivity best "far" away from Z peak, particularly at the low side
 - Systematics (normalisation) probably a killer
- ii. From $A_{FB}^{\mu\mu}$
 - Sensitivity best at 88 and 95 GeV
 - Experimental systs. looks controlable, but need further study
 - Theoretical systs. to large degree cancel by "averaging" over 88 and 95 GeV point

By running six months at each of 88 and 95 GeV points:

Could potentially reach a precision of 2 x 10⁻⁵

Statistical uncertainty for one year of running at any centre-of-mass energy. Crab-waiste, 4 IP.

P. Janot