# Measurement of Double Parton Scattering at LHC with the CMS experiment

#### **Ankita Mehta**

(on behalf of the CMS Collaboration)

Panjab University Chandigarh

**EPS HEP 2015, Vienna** 

23 July 2015



22 - 29 JULY 2015 VIENNA, AUSTRIA



#### **Outline**

- Multiparton interactions and double parton scattering (DPS)
- Effective cross section ( $\sigma_{eff}$ )
- Looking for MPI
- DPS using processes:
  - W + 2jets
  - 4jets
  - 2b + 2jetsphoton + 3jets
- Results and Summary



#### **Multi-parton interactions**

- A hadron—hadron collision is described in terms of one single hard scattering between the partons of the colliding hadrons
- Large parton densities and small x→ probability to have more than one scattering between partons:
   Multi-parton interactions (MPI)



- MPI are accompained by large hadronic activity and are usually soft
- Underlying event measurements show evidence of MPI presence
- Two simultaneous hard parton-parton interactions in a single proton-proton collision: Double Parton

#### Scattering

- W + 2iets (CMS Collaboration; JHEP 1403(2014)032)
- 4iets (CMS Collaboration: Phys.Rev.D 89(2014)092010)
- 2light + 2bjets (CMS-PAS-FSQ-13-010)
- photon + 3jets (CMS-PAS-FSQ-12-017)

#### **Effective cross section**

Cross section of two processes "X" and "Y" occuring simultaneously can be written as:

(Inclusive formalism, no parton correlation)

$$\sigma(X+Y) = \frac{m*\sigma(X)*\sigma(Y)}{\sigma_{eff}}$$

where  $\sigma(X)$  and  $\sigma(Y)$  are cross section for processes X and Y, "m" is the symmetry factor  $m=\frac{1}{2}$ , if processes "X" and "Y" are identical otherwise one.



- $\sigma_{eff}$ : Effective area parameter for double-parton interactions
- Input for theoretical models
- Is expected to be independent of process type and collision energy

Measurement of  $\sigma_{\rm eff}$  provides access to information about hadron structure in transverse plane, understanding of background to the new Physics searches

#### Where to look for MPI!!



#### DPS using W + 2jets

### Signal

- W from first hard parton-parton interaction
- Exactly two jets from the second hard interaction
- Only muoninc decay of W is considered for the analysis

#### Background

Both W and two jets coming from single hard interaction (SPS)

### DPS





#### **Event selection and effective cross section**

- Full 2011 pp collision data collected with CMS detector at  $\sqrt{s} = 7$  TeV
- Integrated luminosity 5 fb<sup>-1</sup>
- Simulated Samples
  - MADGRAPH5+PYTHIA8 4C. PYTHIA6 Z2\*
  - POWHEG (MINLO) + PYTHIA6 Z2\*, HERWIG6
  - Various background samples: VV, top, QCD multijets, Drell-Yan

#### W selection

- Single muon trigger, with only one well reconstructed and isolated muon
- $\rho_T(\mu) > 35 \text{ GeV}, |\eta|(\mu) < 2.1$
- Missing transverse energy > 35 GeV/c
- W transverse mass > 50 GeV/c²

#### Jets selection

- Particle flow jets reconstructed with anti-kT jet clustering algorithm, with cone size of 0.5
- $p_T > 20 \text{ GeV/c}, |\eta| < 2.0$
- No muon within  $\Delta R = 0.5$

#### Effective cross section

$$\sigma_{
m eff} = rac{\sigma_{
m W+0jet}^{'}}{\sigma_{
m W+2j}^{'}} \cdot \sigma_{2j}^{'} \qquad \longrightarrow \quad \sigma_{
m eff} = rac{R}{f^{
m DPS}} \cdot rac{\sigma_{2j}^{'}}{f^{
m DPS}}$$

R - fraction of W+0-jet events with respect to W+2-jet events (from data)

 $f^{\mathrm{DPS}}$ - fraction of (W+2-jet) $^{\mathrm{DPS}}$  events with respect to total W+2-jet events (from data and MC)

 $\sigma'_{2i}$  - dijet cross section at particle level (from data)

### DPS sensitive observables in W + 2jets events

- Relative transverse momentum balance between selected jets ( $\Delta^{rel}p_T$ )
- Azimuthal angle between W and dijet system ( $\Delta S$ )

$$\Delta^{\mathrm{rel}} \ p_T = \frac{|\vec{p}_T(\mathbf{j}_1) + \vec{p}_T(\mathbf{j}_2)|}{|\vec{p}_T(\mathbf{j}_1)| + |\vec{p}_T(\mathbf{j}_2)|}. \qquad \Delta S = \arccos\left(\frac{\vec{p}_T(\mu, E_T).\vec{p}_T(\mathbf{j}_1, \mathbf{j}_2)}{|\vec{p}_T(\mu, E_T)|.|\vec{p}_T(\mathbf{j}_1, \mathbf{j}_2)|}\right),$$



- Nice agreement between data and MC predictions
- No DPS extraction at detector level, unfold distributions at particle level

## Unfolding and systematic uncertainities

- Background contribution is subtracted before unfolding
- Method: Bayesian approach (cross checked with SVD method), consistent within 1-2%
- W + 2jets cross section also unfolded to particle level

#### Particle level selection

- $\mu$ :  $p_T > 35$  GeV/c and  $|\eta| < 2.1$
- Missing transverse energy > 30 GeV/c and  $M_T$  > 50 GeV $c^2$
- Exactly 2 jets:  $p_T > 20$  GeV/c and  $|\eta| < 2.0$

#### Systematic uncertainities

| Source                       | $\Delta^{\mathrm{rel}} p_{\mathrm{T}}$ | ΔS         | Cross section |
|------------------------------|----------------------------------------|------------|---------------|
| Model dependence             | ≤ 3.2                                  | ≤ 3.9      | 11            |
| Background normalization     | $\leq 0.2$                             | $\leq 0.3$ | 1.0           |
| JES                          | $\leq 1.4$                             | $\leq 2.9$ | 7.4           |
| JER                          | $\leq 0.5$                             | $\leq 0.7$ | 1.3           |
| <b></b> ∉ <sub>T</sub> scale | $\leq 0.5$                             | $\leq 3.7$ | 3.3           |
| Pileup                       | $\leq 0.8$                             | $\leq 3.7$ | 2.3           |
| Muon ID and trigger          | _                                      | _          | 2.2           |
| Luminosity                   | _                                      | _          | 2.2           |
| Total                        | ≤ 3.7                                  | ≤ 7.2      | 14            |

#### Particle level distributions

• W + 2jets cross section;  $53.4 \pm 0.11$  (stat.)  $\pm 7.6$  (syst.)pb, consistent with MC



- PYTHIA8 fails; due to missing contribution of higher order processes
- LO (MADGRAPH + PYTHIA) and NLO (POWHEG + PYTHIA/HERWIG6) provide same level of agreement with measurement
- POWHEG + PYTHIA and MADGRAPH + PYTHIA fail in absence of MPI

## Results: DPS via W + 2jets - I

#### DPS fraction extraction

- Signal templates: Random of W+0-jet and dijet events from MCs, templates are validated with data
- Background templates:
  - MADGRAPH + PYTHIA; MPI parton tagged with status code
  - Remove events which can be identified as signal at particle level i.e. two MPI partons should not be in  $\eta$  acceptance ( $|\eta| < 2$ )
  - NO jet-parton matching
  - NO overlap and/or missing phase space
  - NO p<sub>T</sub> dependence for <</li>
     12-15 GeV
- Fractions with two observables are consistent within uncertainties
- Simultaneous fit of observables; close with f<sup>DPS</sup><sub>evt</sub> (DPS fraction by default MPI model)







### Results: DPS via W + 2jets - II

$$\sigma_{\mathrm{eff}} = \frac{\mathrm{R}}{f_{\mathrm{DPS}}} \cdot \sigma_{2\mathrm{j}}'$$

- Measured R, ratio between W + 2jets and W + 0jet events, corrected to particle level using MADGRAPH + PYTHIA6
- Measured dijet production cross section
- Combining all inputs,  $\sigma_{eff} = 20.7 \pm 0.8$  (stat.)  $\pm 6.65$  (syst.) mb
- Consistent within uncertainties with ATLAS, CDF and D0 measurements
- No conclusion can be made about the independence on the process and collision energy due to large uncertainities



#### DPS via 4jets - I

#### 4-jet final state may arise from:

- Parton Shower (PS)
  - Second hard scattering

Disentangle double parton scattering from single parton scatering



4jets measurements are sensitive to hard matrix element and underlying events: A proper admixture
of ME and UE contributions is needed

#### Event selection

- pp collisions at 7 TeV with itegrated luminosity: 36 pb<sup>-1</sup>
- Low PileUp and single jet triggers
- Two jets with  $p_T > 50$  GeV (20 for others) respectively hard pair (soft pair)

#### Observables

The different kinematical configuration can be used to discriminate the two processes through some observables:

$$\begin{split} \Delta\phi(j_i,j_k) &= \phi_i - \phi_k \\ \Delta_{soft}^{rel} p_T &= \frac{|p_T(j_i,j_k)|}{|p_T(j_i)| + |p_T(j_k)|} \end{split}$$

$$\Delta S = \arccos\left(\frac{\vec{p}_T(j^i, j^k) \cdot \vec{p}_T(j^l, j^m)}{|\vec{p}_T(j^i, j^k)| \cdot |\vec{p}_T(j^l, j^m)|}\right)$$

## DPS via 4jets: Kinematical topology of jets of the final state in the transverse plane



- No significant difference in  $\Delta \phi$  and  $\Delta_{soft}^{rel} p_T$  for different generators
- SHERPA and PYTHIA8 perform best for ΔS
- POWHEG + PYTHIA with MPI off underestimates the data for  $\Delta S$  and  $\Delta_{soft}^{rel} p_T$
- $\bullet$   $\Delta_{soft}^{rel} p_T$  and  $\Delta S$  are sensitive to MPI

#### DPS via 2b-jets + 2jets - I

- Study of QCD evolution in a heavy flavour scenario
- Comparison with different MC models and test of their performance
- Study and separate the different topologies for events coming from single chain and double chain processes



$$\begin{split} \Delta\phi(j_i,j_k) &= |\phi_i - \phi_k| \\ \Delta S &= \arccos\left(\frac{\vec{p}_T^b \cdot \vec{p}_T^l}{|p_T^b| \cdot |p_T^l|}\right) \\ \Delta_{\textit{pair}}^{\textit{rel}} p_T &= \frac{|p_T(j_i,j_k)|}{|p_T(j_i)| + |p_T(j_k)|} \end{split}$$

- The jets need to be associated in pairs: (→ natural way thanks to the different flavour)
- The equal scale of the two jet pairs should suppress the SPS contribution (at least 4 jets with  $p_T > 20 \text{ GeV}$ )

## DPS via 2b-jets + 2jets - II







- MADGRAPH, PYTHIA6 and POWHEG are able to reproduce quite well jet p<sub>T</sub> spectra
- HERWIG++ tends to underestimate data at low p<sub>T</sub> region
- ΔS distributions best described by PYTHIA8 and HERWIG++
- Description of correlation observables depends on DPS contribution

#### DPS via photon + 3jets



- Photon-iet from first hard interaction
- Dijet from second hard interaction

#### Selections:

 $\gamma$  and one jet in the central region with  $\rho_T > 75 \text{ GeV}$ pair of "soft" jets with  $\rho_T > 20 \text{ GeV}$  in  $|\eta| < 2.4$ 

- Data is reasonably well described by all MCs
- Measurement is not yet sensitive to MPI

## Three kind of contributions are considered:

- direct photon + 3 jets events
- fragmentation photon + 3 jets events
- misidentified (fake) photon + 3 jets events



#### **Summary**

- DPS measurements are quite important for understanding partonic structure of hadrons as well as for New Physics searches at LHC
- Various channels are being probed to perform DPS measurement at LHC
- Presented results for: W + 2jets, 4jets, 2b + 2jets, γ + 3jets
- Measurements are reasonably well described by different generator tunes
- Large systematics on  $\sigma_{eff}$  measurements due to model dependence
- To conclude on process, scale, and energy dependence, important to reduce systematic uncertainties
- More integrated luminosity is needed for new channels
- Higher center of mass energy would increase DPS contribution

