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Expected b-tagging performance

for ATLAS iIn LHC Run 2

Introduction

| “' The identification of jets originating from b-quarks is an important aspect of many analyses in ATLAS (e.g. top physics, H->bb, new physics searches). The discrimination of b and light-
\ X jets (udsg) is mainly possible thanks to the long lifetime of b-flavored hadrons, leading to significantly displaced secondary vertices (SV), and reconstructed charged particle tracks with
arge impact parameters (IP). Thanks to the addition of a pixel detector layer, the Insertable-B-Layer (IBL), which is closer to the beam pipe (~3.3cm instead of ~5cm), and has smaller
pixels (50um x 250pm instead of 50um x 400um), the impact parameter resolution is improved in Run 2. Together with improvements to the b-tagging algorithms [1], the b-tagging
performance is expected to be significantly enhanced in LHC Run 2. All the plots shown here are made using a ttbar simulated sample, and use a loose jet selection: pr> 20GeV and |n|

< 2.5. The basic b-tagging algorithms all use tracks spatially matched to the jets as input.

Basic b-tagging algorithms
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(right) IP significances. least one two track vertex is lower, they have a much higher

An additional component comes from pile-up tracks. Since purity compared to the one-track vertex decay chains.

With the Run 2 configuration, SVF typically manages
to reconstruct a SV in 70-80% of b-jets.
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Two properties of the reconstructed vertex are shown:  propapility density functions of the signed IP significance are The two plots above show the number of vertices associated to
the transverse decay length (left), and the mass of the  ysed to define ratios of the b- and light-jet hypotheses which & least two tracks (left), and the number of tracks from vertices

secondary vertex (right). are then combined into a single log likelihood ratio discriminant With at least two tracks (right).
(LLR), which are shown above for IP2D (left) and IP3D (right)

MVx tagging algorithms : from Run 1 to Run 2

MVX: a combined tagging algorithm Here we compare MV1c with the Run 1 detector and reconstruction software, to MV2c20 with the Run 2 detector and
©Combine variables from the three basic algorithms reconstruction software, on a ttbar simulated sample at 8TeV for MV1, and 13 TeV for MV2. The 13 TeV sample is re-weighted to
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(right), for a global cut on the MV2c20 output, which
corresponds to a 70% b-jet efficiency on the ttbar sample.

Thomas CALVET (CPPM, Aix-Marsellle Universite), for the ATLAS Collaboration | ) &PMTMAEé
crPMRe



	Slide 1

