

and their impact

on the EW chiral Lagrangian

EPS-HEP 2015, Vienna

July 24th 2015

J.J. Sanz-Cillero (UAM/CSIC-IFT)

In collaboration with: A.Pich, I.Rosell, J.Santos (Valencia)

PRL 110 (**2013**) 181801 [arXiv:1212.6769] JHEP 01 (**2014**) 157 [arXiv:1310.3121] [arXiv:1501.07249 [hep-ph]]; forthcoming FTUAM-15-20

Instituto de Física Teórica

EXCELENCIA SEVERO OCHOA

CURRENT SITUATION

<u>Goal #1:</u>

the Resonance + EFT program

$\frac{\text{Goal #2:}}{\text{Does }\Lambda_{\text{BSM}}} \text{ need to be > 10 TeV?}$

Reply: NO in the appropriate EFT and counting

Low-energy chiral expansion

- If Higgs (pseudo) Goldstone boson \rightarrow Non-linearity for $h + \omega^a$
- Expansion in non-linear EFT's: *

- * Pich, Rosell, Santos, SC, forth coming FTUAM-15-20
- J.J. Sanz Cillero

* Weinberg '79

* Hirn, Stern '05

* Urech '95

R contributions to the NLO EFT couplings [*i.e.*, $O(p^4)$]

• High-energy theory for Resonances + χ + ψ General $\Delta \mathcal{I}_R$ `up to O(p²)' ** R= singlet and triplet V, A, S, P [also J^{PC}=1⁺⁻ at ^(x)]

Low-energy EFT (ECLh) *

 $e^{i S[\chi,\psi]_{\text{EFT}}} = \int [dR] e^{i S[\chi,\psi,R]}$ $\stackrel{\text{tree-level}}{=} e^{i S[\chi,\psi,R_{\text{cl.}}]}$ $\Delta \mathcal{L}_{p^{i}}^{\text{EFT}} = \frac{1}{2M_{R}^{2}} \left(\langle \mathcal{O}_{R} \mathcal{O}_{R} \rangle - \frac{1}{N} \langle \mathcal{O}_{R} \rangle^{2} \right) \qquad (R = S, P),$ $\Delta \mathcal{L}_{p^{i}}^{\text{EFT}} = -\frac{1}{M_{R}^{2}} \left(\langle \mathcal{O}_{R}^{\mu\nu} \mathcal{O}_{R\mu\nu} \rangle - \frac{1}{N} \langle \mathcal{O}_{R}^{\mu\nu} \rangle^{2} \right) \qquad (R = V, A),$ $\Delta \mathcal{L}_{p^{i}}^{\text{EFT}} = -\frac{1}{2M_{R_{1}}^{2}} (\mathcal{O}_{R_{1}})^{2} \qquad (R_{1} = S_{1}, P_{1}),$ $\Delta \mathcal{L}_{p^{i}}^{\text{EFT}} = -\frac{1}{M_{R_{1}}^{2}} (\mathcal{O}_{R_{1}}^{\mu\nu} \mathcal{O}_{R_{1}\mu\nu}) \qquad (R_{1} = V_{1}, A_{1}).$

(classification of the operators according to `chiral' dimension)

Impose UV-completion assumptions on *L_R*, (sum-rules, unitarity...) → EFT predictions **

- * Weinberg, 79; Manohar, Georgi, NPB234 (1984) 189
- * Gasser,Leutwyler '84 '85
- * Hirn,Stern '05
- * Buchalla,Catà,Krause '13
- * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149
- J.J. Sanz Cillero

- * Apelquist, Bernard '80
- * Longhitano '80, '81
- * Alonso, Gavela, Merlo, Rigolin, Yepes '12
- * Brivio, Corbett, Eboli, Gavela, Gonzalez-
- Fraile, Gonzalez–Garcia, Merlo, Rigolin '13
- (x) Catà, EPJC74 (2014) 8, 2991
- ** Ecker et al. '89
- ** Cirigliano et al., NPB753 (2006) 139
- ** Pich,Rosell,Santos,SC, [1501.07249]; forthcoming FTUAM-15-20

BASIC TREE-LEVEL EXAMPLE: V form-factors & $Z \rightarrow ff$

• Triplet V contribution in C & P-even strongly couple theories (full R Lagrangian in *)

$$\mathcal{L}_{V} = Tr\{V_{\mu\nu} \left(\frac{F_{V}}{2\sqrt{2}}f_{+}^{\mu\nu} + \frac{iG_{V}}{2\sqrt{2}}[u^{\mu}, u^{\nu}] + c_{1}^{V}\nabla^{\mu}J_{V}^{\nu}/v^{2} + ...\right)\}$$

• Contribution from V,
to the EFT @ NLO:
$$\mathcal{L}_{p^4}^{\text{from V}} = -i \frac{F_V G_V}{4M_V^2} Tr\{f_+^{\mu\nu}[u^{\mu}, u^{\nu}]\} - \frac{F_V c_1^V}{\sqrt{2}M_V^2} Tr\{f_+^{\mu\nu} \nabla_{\mu} J_{V\nu}/v^2\} + ...$$

 $\overbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{a}_3)/2} \underbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{a}_3)/2} \underbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{a}_3)/2} = - \underbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{a}_3)/2} \underbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{a}_3)/2} = - \underbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{i})} = - \underbrace{\mathbf{v}}_{\mathbf{i} \ (\mathbf{a}_2 - \mathbf{i$

* Pich,Rosell,Santos,SC, [1501.07249]; forthcoming FTUAM-15-20

** Pich,Rosell, SC, PRL110 (2013) 181801; JHEP01 (2014) 157

• Contributions to $Z \to f\bar{f}$ (with f=t,b) ? *

easily in agreement with O(10⁻³) measurements of $\delta g_{R,L}$ **

- * Pich,Rosell,Santos,SC, fothcoming
- ** Agashe, Contino, Da Rold, Pomarol, PLB641 (2006) 62
- ** Efrati ,Falkowski,Soreq, [1503.07872]
- ** LEP [0511027]
- J.J. Sanz Cillero

Similar conclusions, but softened

For $M_V < M_A$: $\checkmark M_R > 1$ TeV at 68% CL.

> Only BSM boson loops in these plots. Preliminary fermion loop studies → Similar result

* Pich,Rosell, SC, PRL 110 (2013) 181801; JHEP 01 (2014) 157

• Similar exp. agreement/suppression in other observables:

For $M_R \sim 4\pi v \approx 3$ TeV,

WW-scattering (a_4, a_5) $\gamma\gamma$ -WW scattering (a_1, a_5) $h \rightarrow \gamma\gamma$ (c_{γ}) 4-fermion operators $(c^{\psi 4})$

$$(a_4, a_5)$$

 $(a_1, a_2, a_3, c_\gamma)$
 (c_γ)
 $(c^{\psi 4})$

ruled by NLO EFT couplings $c_j = F_R^2 / M_R^2 \sim v^2 / M_R^2 < 10^{-2}$

(<1% correction to the amplitudes for $p \sim v=246 \text{ GeV}$)

Conclusions

1) Build a custodial-invariant Lagrangian with R + light dof ($\chi + \psi$)

- 2) Low-energy expansion and matching: R contributions to the EFT @ O(p⁴)
 → NLO eff. couplings in terms of R parameters GOAL #1
- 3) High-energy constraints on R theory \rightarrow stronger low-energy predictions

This framework allows us in a natural way:

BACKUP

PREDICTIONS: ONE-LOOP results + UV-constraint Higgsless C & P-even

$$T = \frac{3}{16\pi\cos^2\theta_W} \left[1 + \log\frac{m_H^2}{M_V^2} - \kappa_W^2 \left(1 + \log\frac{m_{S_1}^2}{M_A^2} \right) \right]$$

$$S = \frac{4\pi v^2 \left(\frac{1}{M_V^2} + \frac{1}{M_A^2}\right) + \frac{1}{12\pi} \left[\left(\log \frac{M_V^2}{m_H^2} - \frac{11}{6}\right) - \kappa_W^2 \left(\log \frac{M_A^2}{m_{S_1}^2} - \frac{11}{6} - \frac{M_A^2}{M_V^2} \log \frac{M_A^2}{M_V^2}\right) \right]$$

[terms $O(m_s^2/M_{V,A}^2)$ neglected]

✓ 1st and 2nd WSRs at LO and NLO + $\pi\pi$ -VFF:

 \rightarrow 2nd WSR: 0 < a = M_V²/M_A² < 1

* Pich,Rosell, SC, PRL 110 (2013) 181801; JHEP 01 (2014) 157

PREDICTIONS: TREE-LEVEL results + UV-constraint

Higgsless part CP conserving Only P-even interactions

(x) Longhitano '80, '81

* Ecker et al. '89

* Pich, Rosell, Santos, SC, [1501.07249]; forthcoming FTUAM-15-20

RESONANCE LAGRANGIAN

- Introduce light dof + Resonances *,**
- Lightest SU(2) triplets V, A, S, P and singlets V₁, A₁, S₁, P₁ **

(antisymetric-tensor formalism $R_{\mu\nu}$ for spin-1 Resonances *)

• To extract their contribution to \mathcal{L}_{p4}

(NOTICE that this avoids contributions to \mathcal{L}_{p2} , avoiding large low-energy corrections to SM)

→ We need only <u>R operators O(p²)</u>

$$\mathcal{L}_{R} = \frac{1}{2} \langle \nabla^{\mu} R \nabla_{\mu} R - M_{R}^{2} R^{2} \rangle + \langle R \chi_{R} \rangle$$

$$(R = S, P),$$

$$\mathcal{L}_{R} = -\frac{1}{2} \langle \nabla^{\lambda} R_{\lambda \mu} \nabla_{\sigma} R^{\sigma \mu} - \frac{1}{2} M_{R}^{2} R_{\mu \nu} R^{\mu \nu} \rangle + \langle R_{\mu \nu} \chi_{R}^{\mu \nu} \rangle$$

$$(R = V, A),$$

$$\mathcal{L}_{R_{1}} = \frac{1}{2} \left(\partial^{\mu} R_{1} \partial_{\mu} R_{1} - M_{R_{1}}^{2} R_{1}^{2} \right) + R_{1} \chi_{R_{1}}$$

$$(R_{1} = S_{1}, P_{1}),$$

$$\mathcal{L}_{R_{1}} = -\frac{1}{2} \left(\partial^{\lambda} R_{1 \lambda \mu} \partial_{\sigma} R_{1}^{\sigma \mu} - \frac{1}{2} M_{R_{1}}^{2} R_{1 \mu \nu} R_{1}^{\mu \nu} \right) + R_{1 \mu \nu} \chi_{R_{1}}^{\mu \nu}$$

$$(R_{1} = V_{1}, A_{1}),$$

* Ecker et al. '89

** Cirigliano et al., NPB753 (2006) 139

** Pich,Rosell,SC '12, '13

** Pich,Rosell,Santos,SC, [1501.07249]; forthcoming FTUAM-15-20

BOSONIC SECTOR : -χ.

• Building blocks with bosons χ ^(x):

EW Goldstones (ω^a)

 $\Rightarrow \begin{array}{rcl} D_{\mu}U &=& \partial_{\mu}U - i\hat{W}_{\mu}U + iU\hat{B}_{\mu} \,, \\ u^{\mu} &=& iu_{R}^{\dagger}(\partial_{\mu} - i\hat{B}_{\mu})u_{R} - iu_{L}^{\dagger}(\partial_{\mu} - i\hat{W}_{\mu})u_{L} &=& iu(D^{\mu}U)^{\dagger}u \,, \end{array}$

EW gauge bosons (B, W^a) $\rightarrow \qquad \hat{W}_{\mu\nu} = \partial_{\mu}\hat{W}_{\nu} - \partial_{\nu}\hat{W}_{\mu} - i[\hat{W}_{\mu}, \hat{W}_{\nu}], \qquad \hat{B}_{\mu\nu} = \partial_{\mu}\hat{B}_{\nu} - \partial_{\nu}\hat{B}_{\mu} - i[\hat{B}_{\mu}, \hat{B}_{\nu}], \\ f^{\mu\nu}_{+} = u^{\dagger}_{L}\hat{W}^{\mu\nu}u_{L} \pm u^{\dagger}_{R}\hat{B}^{\mu\nu}u_{R}.$

Higgs (singlet h)

h via polynomials $\mathcal{F}(h/v)$ & derivatives \rightarrow

* Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149

* Buchalla, Catà, Krause '13

* Hirn, Stern '05

** Urech '95

soft-scale!!!

• "Chiral" counting^{*,**}:

$$\partial_{\mu}, \quad m_W, \quad m_Z, \underbrace{m_h}_{\sim} \sim \mathcal{O}(p)$$
$$D_{\mu}U, \quad V_{\mu}, \quad g'v \mathcal{T}, \quad \hat{W}_{\mu}, \quad \hat{B}_{\mu} \sim \mathcal{O}(p),$$
$$\hat{W}_{\mu\nu}, \quad \hat{B}_{\mu\nu} \sim \mathcal{O}(p^2).$$

(x) Apelquist, Bernard '80

- (x) Longhitano '80, '81
- (x) Herrero, Morales '95
- (x) Pich,Rosell,SC '12 '13
- (x) Alonso et al., PLB722 (2013) 330

...etc

'CHIRAL' COUNTING

• "Chiral" counting *

$$\frac{\chi}{v} \sim \mathcal{O}(p^0)$$
, $\frac{\psi}{v} \sim \mathcal{O}\left(p^{\frac{1}{2}}\right)$, $\partial_{\mu}, m_{\chi}, m_{\psi} \sim \mathcal{O}(p)$

and for the building blocks, $u(\varphi/v), U(\varphi/v), \frac{h}{v}, \frac{W^a_{\mu}}{v}, \frac{B_{\mu}}{v} \sim \mathcal{O}(p^0),$ $D_{\mu}U, u_{\mu}, \hat{W}_{\mu}, \hat{B}_{\mu} \sim \mathcal{O}(p),$

$$\hat{W}_{\mu\nu}, \, \hat{B}_{\mu\nu}, \, f_{\pm\,\mu\nu} \quad \sim \quad \mathcal{O}\left(p^2\right) \,,$$

$$\partial_{\mu_1} \partial_{\mu_2} \dots \partial_{\mu_n} \mathcal{F}(h/v) \sim \mathcal{O}(p^n) ,$$

 $rac{\xi}{v} ~\sim~ \mathcal{O}\left(p^{rac{1}{2}}
ight)$.

- * Manohar, Georgi, NPB234 (1984) 189
- * Hirn,Stern '05
- * Buchalla,Catà,Krause '13
- * Pich,Rosell,Santos,SC,
 - forthcoming FTUAM-15-20

• Assignment of the 'chiral' dimension: *

$$\mathcal{L}_{p^{\hat{d}}} \sim a_{(\hat{d})} p^{\hat{d}-N_F/2} \left(\frac{\overline{\psi}\psi}{v^2}\right)^{N_F/2} \sum_{j} \left(\frac{\chi}{v}\right)^{j}$$

'CHIRAL' expansion in ECLh

• EFT Lagrangian at LO and NLO in chiral exp. *

$$\mathcal{L}_{ECLh} = \mathcal{L}_{p^{2}} + \mathcal{L}_{p^{4}} + \dots$$

$$\overline{\mathcal{L}_{p^{4}}} = -\frac{i}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}$$
Examples of BSM terms:
$$\frac{i}{\sqrt{2}} = -\frac{i}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}$$

$$\frac{i}{\sqrt{2}} = \frac{(a-1)h}{2v} \operatorname{Tr}\{D_{\mu}U^{\dagger}D^{\mu}U\} + \dots$$

$$\frac{i}{\sqrt{2}} = \frac{i}{2}(a_{2} - a_{3}) \operatorname{Tr}\{f_{+}^{\mu\nu}[u_{\mu}, u_{\nu}]\}$$

$$+ \mathcal{F}_{X\psi\psi} \operatorname{Tr}\{f_{+}u\nu d^{\mu}J_{V}^{\nu}\} + \dots$$

which leads to a chiral exp. in the sctatering

$$T(2 \to 2) = \frac{p^2}{v^2} + \underbrace{\frac{a_{(4)}p^4}{v^4}}_{tree-NLO} + \underbrace{\frac{p^4}{16\pi^2 v^4}}_{1\ell oop-NLO} + \dots$$

- * Weinberg '79
- * Manohar, Georgi, NPB234 (1984) 189
- * Urech '95
- * Georgi, Manohar NPB234 (1984) 189
- * Buchalla,Catà,Krause '13
- * Hirn,Stern '05
- * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149
- * Pich,Rosell,Santos,SC, forthcoming
- J.J. Sanz Cillero

Integrating out the RESONANCES

$$e^{iS[\chi,\psi]_{\rm EFT}} = \int [dR] e^{iS[\chi,\psi,R]}$$

- At the practical level, *
 - **1.)** Compute the Resonance EoM

for p<<M_R:

2.) Tree-level contribution to the O(p⁴) ECLh for p<<M_R:

$$\begin{split} R_{\rm c\ell} &= \ \frac{1}{M_R^2} \left(\chi_R - \frac{1}{N} \langle \chi_R \rangle \right) \ + \ \dots \qquad (R = S, P) \,, \\ R_{\rm c\ell}^{\mu\nu} &= \ -\frac{2}{M_R^2} \left(\chi_R^{\mu\nu} - \frac{1}{N} \langle \chi_R^{\mu\nu} \rangle \right) \ + \ \dots \qquad (R = V, A) \,, \\ R_{\rm 1 \ c\ell} &= \ \frac{1}{M_{R_1}^2} \chi_{R_1} \ + \ \dots \qquad (R_{\rm 1} = S_{\rm 1}, P_{\rm 1}) \,, \\ R_{\rm 1 \ c\ell}^{\mu\nu} &= \ -\frac{2}{M_{R_1}^2} \chi_{R_1}^{\mu\nu} \ + \ \dots \qquad (R = V, A) \,, \end{split}$$

$$\begin{aligned} \Delta \mathcal{L}_{R}^{\mathcal{O}(p^{4})} &= \frac{1}{2M_{R}^{2}} \left(\left\langle \chi_{R} \chi_{R} \right\rangle - \frac{1}{N} \left\langle \chi_{R} \right\rangle^{2} \right) & (R = S, P) \,, \\ \Delta \mathcal{L}_{R}^{\mathcal{O}(p^{4})} &= -\frac{1}{M_{R}^{2}} \left(\left\langle \chi_{R}^{\mu\nu} \chi_{R\mu\nu} \right\rangle - \frac{1}{N} \left\langle \chi_{R}^{\mu\nu} \right\rangle^{2} \right) & (R = V, A) \,, \\ \Delta \mathcal{L}_{R_{1}}^{\mathcal{O}(p^{4})} &= \frac{1}{2M_{R_{1}}^{2}} \left(\chi_{R_{1}} \right)^{2} & (R_{1} = S_{1}, P_{1}) \,, \\ \Delta \mathcal{L}_{R_{1}}^{\mathcal{O}(p^{4})} &= -\frac{1}{M_{R_{1}}^{2}} \left(\chi_{R_{1}}^{\mu\nu} \chi_{R_{1}\mu\nu} \right) & (R_{1} = V_{1}, A_{1}) \,. \end{aligned}$$

$$S[\chi, \psi]_{\text{EFT}} = S[\chi, \psi, \frac{R_{c\ell}}{R_{c\ell}}]$$

* Ecker et al. '89

• I could show you this,

$$\begin{split} \chi_{V}^{\mu\nu} &= \frac{F_{V}}{2\sqrt{2}} f_{+}^{\mu\nu} + \frac{iG_{V}}{2\sqrt{2}} [u^{\mu}, u^{\nu}] \\ &+ c_{V0}v J_{T}^{\mu\nu} \\ &+ \frac{c_{V1}}{2} \left(\nabla^{\mu} J_{V}^{\nu} - \nabla^{\nu} J_{V}^{\mu} \right) + \frac{ic_{V2}}{2} \left([J_{A}^{\mu}, u^{\nu}] - [J_{A}^{\nu}, u^{\mu}] \right) \\ &+ \frac{c_{V3}}{2} \left(\frac{(\partial^{\mu} h)}{v} J_{V}^{\nu} - \frac{(\partial^{\nu} h)}{v} J_{V}^{\mu} \right) \\ &+ c_{V4} e^{\mu\nu\alpha\beta} \{ J_{V\alpha}, u_{\beta} \} + c_{V5} e^{\mu\nu\alpha\beta} J_{A'\alpha\beta} , \end{split}$$

$$\chi_{A}^{\mu\nu} &= \frac{F_{A}}{2\sqrt{2}} f_{-}^{\mu\nu} + \frac{\lambda_{1}^{hA}}{\sqrt{2}} \left((\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu} \right) \\ &+ \frac{c_{A1}}{2} \left(\nabla^{\mu} J_{A}^{\nu} - \nabla^{\nu} J_{A}^{\mu} \right) + \frac{ic_{A2}}{2} \left([J_{V}^{\mu}, u^{\nu}] - [J_{V}^{\nu}, u^{\mu}] \right) \end{split}$$

Full Higgsless result (Longhitano ^(x))

Higgsless part CP conserving But P-even & P-odd terms

(x) Longhitano '80, '81

* Ecker et al. '89

* Pich,Rosell,Santos,SC,[1501.07249]; forthcoming

PREDICTIONS: TREE-LEVEL results + UV-constraint

Higgsless part CP conserving Only P-even interactions

(x) Longhitano '80, '81

* Ecker et al. '89

* Pich, Rosell, Santos, SC, [1501.07249]; forthcoming

$SU(2)_{L}\otimes SU(2)_{R}$ / $SU(2)_{L+R}$ Resonance Theory (P-even)

$$\mathcal{L} \,=\, \mathcal{L}_{ ext{EW}}^{(2)} + \mathcal{L}_{ ext{GF}} + \mathcal{L}_V + \mathcal{L}_A + \mathcal{L}_{VV}^{ ext{kin}} + \mathcal{L}_{AA}^{ ext{kin}} + .$$
 ...

£

w/ field content:

 $SU(2)_{L} \otimes SU(2)_{R}/SU(2)_{L+R} EW Goldstones + SM gauge bosons$

+ one SU(2)_L \otimes SU(2)_R singlet Higgs-like scalar S₁ with m_{S1}=126 GeV ***

+ lightest V and A resonances -triplets- (antisym. tensor formalism) (x)

•Relevant resonance Lagrangian (x), **

NOTATIONS: $\omega = \mathbf{a} = \kappa_{\mathbf{W}} = \kappa_{\mathbf{Z}}$

$$+ \frac{F_A}{2\sqrt{2}} \langle A_{\mu\nu} f_-^{\mu\nu} \rangle + \sqrt{2} \lambda_1^{hA} \partial_\mu h \langle A^{\mu\nu} u_\nu \rangle \qquad \longleftarrow \text{A+h+}\omega \text{ sector}$$

We will have 7 resonance parameters:

 $F_{V},\,G_{V},\,F_{AW},\,\kappa_{W},\,\lambda_{1}{}^{SA},\,M_{V}$ and M_{A}

High-energy constraints will be crucial

(x) SD constraints: Ecker et al. '89 (x) EoM simplifications: Xiao, SC '07 (x) EoM simplifications: Georgi '91 (x) EoM simplification: Pich,Rosell,SC '13	** Appelquist, Bernard '80 ** Longhitano '80 '81 ** Dobado,Espriu,Herrero '91 ** Dobado et al. '99 ** Espriu,Matias '95 …	*** Alonso et al. '13 *** Manohar et al. '13 *** Elias-Miro et al. '13…	
--	---	---	--

	Р	С	CP	h.c.
S	S	S^T	S^T	S
Р	-P	P^T	$-P^T$	Р
$V^{\mu\nu}$	$V_{\mu\nu}$	$-V^{\mu\nu T}$	$-V_{\mu\nu}^T$	$V^{\mu\nu}$
$A^{\mu\nu}$	$-A_{\mu\nu}$	$A^{\mu uT}$	$-A^T_{\mu\nu}$	$A^{\mu\nu}$

	Р	С	CP	h.c.
U	U^{\dagger}	U^t	U^*	U^{\dagger}
u	u^{\dagger}	u^t	u^*	u^{\dagger}
u^{μ}	$-u_{\mu}$	$u^{\mu t}$	$-u^t_\mu$	u^{μ}
$(d^{\mu}X)$	$(d_{\mu}X')$	$(d^{\mu}X)'$	$(d_{\mu}X)'$	$(d^{\mu}X^{\dagger})$
$f^{\mu\nu}_{\pm}$	$\pm f_{\pm\mu\nu}$	$\mp f_{\pm}^{\mu\nu \ t}$	$-f^t_{\pm\mu\nu}$	$f^{\mu\nu}_{\pm}$
$\partial^{\mu}h$	$\partial_{\mu}h$	$\partial^\mu h$	$\partial_{\mu}h$	$\partial^{\mu}h$

→<u>W³B correlator*</u>

J.J. Sanz Cillero

Composite resonance and their impact on the low-energy EW chiral Lagrangian 28/12

• More observables* can over-constrain the $a_i(\mu)$ BUT not (S,T) alone!!!

• Taking just tree-level is incomplete
$$\longrightarrow \begin{bmatrix} S = -16\pi a_1(\mu?), & T = \frac{8\pi}{c_W^2}a_0(\mu?) \end{bmatrix}$$

and similar if only loops $\longrightarrow \begin{bmatrix} S = \frac{(1-a^2)}{12\pi}\ln\frac{\mu^2}{m_h^2}, & T = -\frac{3(1-a^2)}{16\pi c_W^2}\ln\frac{\mu^2}{m_h^2} \end{bmatrix}$

•Otherwise, one may resource to models**:

 $\rightarrow \text{Resonances} \qquad (lightest V + A)$

→ UV-completion assumptions (high-energy constraints)

* Delgado, Dobado, Herrero, SC [in prep.] ** Pich, Rosell, SC '12, '13

also notice the subtlet $y^{*,**}$ $g^{(')} \sim m_{W,Z}/v \sim p/v$ [notice $e \sim p/v$ too]

(x) Apelquist, Bernard '80

(x) Longhitano '80, '81

(x) Herrero, Morales '95

(x) Pich,Rosell,Sc '12 '13 (x) Brivio et al. '13

(x) Gavela, Kanshin, Machado, Saa '14, etc.

* Buchalla,Catà,Krause '13

* Hirn,Stern '05

* Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149

** Urech '95

J.J. Sanz Cillero

Composite resonance and their impact on the low-energy EW chiral Lagrangian 30/12(6)

Counting, **loops & renormalization**

•In general, the O(p^d) Lagrangian has the symbolic form $(\chi=W,B,\pi,h)$, \neg (1) , $\land \lor \lor k$

$$\mathcal{L}_d = \sum_k f_k^{(a)} p^d \left(\frac{\lambda}{v}\right)$$

$$\begin{array}{l} \mathcal{K} \\ \mbox{leading to a general scaling* of a diagram with} \\ \mathcal{M} \ \sim \ \left(\frac{p^2}{v^{E-2}} \right) \ \left(\frac{p^2}{16\pi^2 v^2} \right)^L \ \prod_d \left(\frac{f_k^{(d)} p^{(d-2)}}{v^2} \right)^{N_d} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \mbox{-} L \ loops \\ \mbox{-} E \ external \ legs \\ \mbox{-} N_d \ vertices \ of \ \mathcal{I}_d \end{array} \right) \ \end{array}$$

J.J. Sanz Cillero

[scaling of individual diagrams; cancellations & higher suppressions for the total amplitude]

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

* Weinberg '79 * Urech '95 **<u>E.g. W_LW_L-scat**:</u>** LO $O(p^2) \rightarrow \frac{p^2}{r^2}$ (tree) * Georgi, Manohar NPB234 (1984) 189 Buchalla, Catà, Krause '13 * Hirn.Stern '05 * Delgado, Dobado, Herrero, SC, JHEP1407 (2014) 149 NLO O(p⁴) \rightarrow $\mathbf{a}_{i} \frac{\mathbf{p}^{4}}{\mathbf{v}^{4}}$ (tree) + $\frac{\mathbf{p}^{4}}{\mathbf{16}\pi^{2}\mathbf{v}^{4}} \left(\frac{1}{\epsilon} + \log\right)$ (1-loop) ** Espriu, Mescia, Yencho '13 ** Delgado, Dobado '13

S-parameter sum-rule *

✓ In this work, dispersive representation introduced by Peskin and Takeuchi*.

$$S = \frac{16}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t} \left(\mathrm{Im}\widetilde{\Pi}_{30}(t) - \mathrm{Im}\widetilde{\Pi}_{30}(t)^{\mathrm{SM}} \right)$$
$$= \int_0^\infty \frac{\mathrm{dt}}{t} \left(\frac{16}{g^2 \tan \theta_W} \mathrm{Im}\widetilde{\Pi}_{30}(t) - \frac{1}{12\pi} \left[1 - \left(1 - \frac{m_{H,ref}^2}{t} \right)^3 \theta(t - m_{H,ref}^2) \right] \right)$$

- ightarrow The convergence of the integral requires $ho_{f S}(t)\equiv rac{1}{\pi}{
 m Im}\widetilde{\Pi}_{30}(t)$ $\stackrel{t
 ightarrow\infty}{\longrightarrow}$ 0
- \rightarrow S-parameter defined for an arbitrary reference value m_{H,ref}
- \rightarrow Higher threshold cuts in Im Π_{30} will be suppressed in the dispersive integral

→ At tree-level:
$$S_{\rm LO} = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right)$$

* Peskin and Takeuchi '92.

High-energy constraints

- ✓ We will have 7 resonance parameters: F_V , G_V , F_A , κ_W , λ_1^{SA} , M_V and M_A .
- ✓ The number of unknown couplings can be reduced by using short-distance information.
- ✓ In contrast with the QCD case, we ignore the underlying dynamical theory.

0) Once-subtracted dispersion* relation for
$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W}{4} s \left[\Pi_{VV}(s) - \Pi_{AA}(s) \right]$$

✓ Once-subtract. dispersive relation from tree+1-loop spectral function** $\pi\pi$, $h\pi$... (higher cuts suppressed) $\Pi_{30}(s) = \Pi_{30}(0) + \frac{s}{\pi} \int_0^\infty \frac{\mathrm{d}t}{t (t-s)} \mathrm{Im}\Pi_{30}(t)$

 \checkmark F_R^r and M_R^r are *renormalized* couplings which define the resonance poles at the one-loop level.

$$|\Pi_{30}(s)|_{\rm NLO} = \frac{g^2 \tan \theta_W}{4} s \left(\frac{v^2}{s} + \frac{F_V^{r\,2}}{M_V^{r\,2} - s} - \frac{F_A^{r\,2}}{M_A^{r\,2} - s} + \overline{\Pi}(s)\right)$$

* Peskin, Takeuchi '90, '91

** Pich, Rosell, SC '08

i) Weinberg Sum Rules (WSR)*
$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W s}{4} [\Pi_{VV}(s) - \Pi_{AA}(s)]$$

 $= \frac{g^2 v^2 \tan \theta_W}{4} + s \widetilde{\Pi}_{30}(s)$

J.J. Sanz Cillero Composite resona

Composite resonance and their impact on the low-energy EW chiral Lagrangian 34/12

* Weinberg'67 * Bernard et al.'75.

** Pich, Rosell, SC '08

J.J. Sanz Cillero

35/12 Composite resonance and their impact on the low-energy EW chiral Lagrangian

LO results***

i.i) 1st and 2nd WSRs **

$$S_{\rm LO} = \frac{4\pi v^2}{M_V^2} \left(1 + \frac{M_V^2}{M_A^2} \right)$$
$$\frac{4\pi v^2}{M_V^2} < S_{\rm LO} < \frac{8\pi v^2}{M_V^2}$$

$$S_{\rm LO} = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right) , \qquad T_{\rm LO} = 0$$

i.ii) Only 1st WSR *** (lower bound for $M_A > M_V$)

$$S_{\rm LO} = 4\pi \left\{ \frac{v^2}{M_V^2} + F_A^2 \left(\frac{1}{M_V^2} - \frac{1}{M_A^2} \right) \right\}$$
$$S_{\rm LO} > \frac{4\pi v^2}{M_V^2}$$

- * Gfitter
- * LEP EWWG
- * Zfitter

** Peskin and Takeuchi '92. *** Pich, Rosell, SC '12

(*M_V* > 3.6 TeV if *T_{LO}*=0 also considered)

NLO results:* 1st and 2nd WSRs in Π_{30}

(asymptotically-free theories)

* Pich,Rosell,SC '12, '13

NLO Results:* Only 1st WSRs in Π_{30}

(walking & conformal TC, extra dimensions,...)**

$$T = \frac{3}{16\pi\cos^2\theta_W} \left[1 + \log\frac{m_H^2}{M_V^2} - \kappa_W^2 \left(1 + \log\frac{m_{S_1}^2}{M_A^2} \right) \right]$$

$$S > \left[\frac{4\pi v^2}{M_V^2} + \frac{1}{12\pi} \left[\left(\ln\frac{M_V^2}{m_H^2} - \frac{11}{6} \right) - \kappa_W^2 \left(\log\frac{M_A^2}{m_{S_1}^2} - \frac{17}{6} + \frac{M_A^2}{M_V^2} \right) \right]$$

[terms $O(m_s^2/M_{V,A}^2)$ neglected]

 \checkmark Assumption $M_A > M_V$ for the S lower-bound

• Only 1st WSR at LO and NLO + $\pi\pi$ -VFF:

 \rightarrow Free parameters: M_V, M_A and κ_W

* Pich,Rosell,SC '12, '13

** Orgogozo, Rychkov '11

NLO Results:* Only 1st WSRs in Π_{30}

very different from the SM if one requires large (unnatural) splittings

* Pich,Rosell,SC '12, '13

** Orgogozo,Rychkov '11

NLO Results:* Only 1st WSRs in Π_{30}

Further comments:

✓ 1< M_A/M_V < 2 yields M_V > 1.5 TeV, κ_W ∈ [0.84, 1.30]

✓ The limit $\kappa_W \rightarrow 0$ only reached for $M_V/M_A \rightarrow 0$

 $\kappa_{W}=0$ incompatible with data (independently of whether 1st+2nd WSR's or just 1st WSR)

 $\checkmark \text{ Predictions for ECLh low-energy couplings} \\ 1^{\text{st}+2^{\text{nd}}} \text{WSRs} \checkmark a_1(\mu) = \left(-\frac{v^2}{4} \left(\frac{1}{M_V^2} + \frac{1}{M_A^2} \right) \right) + \frac{1}{192\pi^2} \left(\frac{8}{3} + \ln \frac{\mu^2}{M_V^2} \right) - \frac{\kappa_W^2}{192\pi^2} \left(\frac{8}{3} + \ln \frac{\mu^2}{M_A^2} \right) + \kappa_W \ln \kappa_W^2 \\ a_0(\mu) = \frac{3}{128\pi^2} \left(\frac{11}{6} + \ln \frac{\mu^2}{M_V^2} \right) - \frac{3\kappa_W^2}{128\pi^2} \left(\frac{11}{6} + \ln \frac{\mu^2}{M_A^2} \right)$

Calculation valid for particular models with this symmetry:

E.g., in SO(5)/SO(4) with $\kappa_W = \cos\theta < 1$ *

- * Agashe, Contino, Pomarol '05
- * Barbieri et al '12
- * Marzocca, Serone, Shu '12 ...

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

•In OUR case, renormalization at O(p4):

$$a_1, a_2, a_3, c_\gamma \to a_1^r, a_2^r, a_3^r, c_\gamma^r$$

$$C^{r}(\mu) = C^{(B)} + \frac{\Gamma_{C}}{32\pi^{2}} \frac{1}{\hat{\epsilon}}$$
$$\frac{dC^{r}}{d\ln\mu} = -\frac{\Gamma_{C}}{16\pi^{2}}$$

•Naively, our EFT range of validity given by

$$\mathbf{p^2} \ll \min\left\{\mathbf{16}\pi^2\mathbf{v^2}\,,\, \frac{\mathbf{v^2}}{\mathbf{a_i}}
ight\}$$

•Previous May: WW-scattering

Composite resonance and their impact on the low-energy EW chiral Lagrangian 43/12(2)

FERMIONIC SECTOR: Ψ

Custodial SU(2)_L ⊗SU(2)_R ⊗U(1)_{B-L} framework ⁽⁺⁾

• (t,b)-type doublets
$$\Psi$$
: $\psi_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, $\psi_R = \begin{pmatrix} t_R \\ b_R \end{pmatrix}$

turned into a covariant doublet ξ with the help of Goldstones u(x)

$$\begin{split} \xi_{m}^{a} &= \frac{1}{2} (\delta^{ab} - \gamma_{5}^{ab}) u_{mn} \psi_{n}^{b} &+ \frac{1}{2} (\delta^{ab} + \gamma_{5}^{ab}) (u^{\dagger})_{mn} \psi_{n}^{b} \\ & \\ \xi_{L} &= \xi_{L} + \xi_{R}, \\ \xi_{L} &= u_{L}^{\dagger} \psi_{L} = u \psi_{L}, \qquad \xi_{R} = u_{R} \psi_{R} = u^{\dagger} \psi_{R} \end{split}$$

•Breaking down to $SU(2)_{L} \otimes U(1)_{Y}$ in $d_{\mu}\xi$ only through spurions

$$\begin{split} \hat{W}_{\mu} &= -\frac{g}{2} W_{\mu}^{a} \sigma^{a} \,, \\ \hat{B}_{\mu} &= -\frac{g'}{2} B_{\mu} \sigma^{3} \,, \\ X_{\mu} &= -B_{\mu} \,, \end{split}$$

- More general EFT based on $SU(2)_L \otimes U(1)_Y$ also possible *
- (+) Pich,Rosell,Santos,SC, forthcoming
- * Buchalla,Catà,Krause '13
- * Hirn,Stern '05
- J.J. Sanz Cillero

Energy scales in a strong-int. Higgs theory?

EFT general considerations

- 1. "SM" content: Bosons χ : Higgs h + EW Golsdtones ω^{\pm} , z + gauge bosons A^{a}_{μ} , B_{μ} ,
 - Fermions ψ : (t,b)-type doublets
- 2. Applicability: $E << \Lambda_{ECLh} \sim min\{4\pi v, M_R\}$ (4 $\pi v \sim 3 \text{ TeV}$)
- 3. EW would-be Goldston bosons \rightarrow Non-linear realization U(ω^a)
- 4. <u>Custodial symmetry</u>: $SU(2)_{L} \otimes SU(2)_{R}/SU(2)_{L+R}$ pattern
- 5. Gauge symmetry: $SU(2)_{L} \otimes U(1)_{Y}$

Additionally it is appropriate to work with

6. Renormalizable R_{ξ} gauge: Landau gauge convenient ($m_{\omega\pm,z} = 0$)

R contributions to the O(p⁴) EFT couplings

1.) Only R operators O(p²) :

$$\mathcal{L}_{R} = \frac{1}{2} \langle \nabla^{\mu} R \nabla_{\mu} R - M_{R}^{2} R^{2} \rangle + \langle R \chi_{R} \rangle \qquad (R = S, P),
\mathcal{L}_{R} = -\frac{1}{2} \langle \nabla^{\lambda} R_{\lambda \mu} \nabla_{\sigma} R^{\sigma \mu} - \frac{1}{2} M_{R}^{2} R_{\mu \nu} R^{\mu \nu} \rangle + \langle R_{\mu \nu} \chi_{R}^{\mu \nu} \rangle \qquad (R = V, A),
\mathcal{L}_{R_{1}} = \frac{1}{2} \left(\partial^{\mu} R_{1} \partial_{\mu} R_{1} - M_{R_{1}}^{2} R_{1}^{2} \right) + \langle R_{1} \chi_{R_{1}} \rangle \qquad (R_{1} = S_{1}, P_{1}),
\mathcal{L}_{R_{1}} = -\frac{1}{2} \left(\partial^{\lambda} R_{1 \lambda \mu} \partial_{\sigma} R_{1}^{\sigma \mu} - \frac{1}{2} M_{R_{1}}^{2} R_{1 \mu \nu} R_{1}^{\mu \nu} \right) + \langle R_{1 \mu \nu} \chi_{R_{1}}^{\mu \nu} \rangle \qquad (R_{1} = V_{1}, A_{1}),$$

[antisymetric-tensor formalism $R_{\mu\nu}$ for spin-1 Resonances *]

2.) Tree-level contribution to the O(p⁴) ECLh for p<<M_R:

$$e^{i S[\chi,\psi]_{\text{EFT}}} = \int [dR] e^{i S[\chi,\psi,R]}$$
$$\stackrel{\text{tree-level}}{=} e^{i S[\chi,\psi,R_{\text{cl.}}]}$$

** Ecker et al. '89

** Cirigliano et al., NPB753 (2006) 139

** Pich,Rosell,Santos,SC, [1501.07249]; forthcoming

$$\begin{split} \Delta \mathcal{L}_{R}^{\mathcal{O}(p^{4})} &= \frac{1}{2M_{R}^{2}} \left(\left\langle \chi_{R} \chi_{R} \right\rangle - \frac{1}{N} \left\langle \chi_{R} \right\rangle^{2} \right) & (R = S, P) \,, \\ \Delta \mathcal{L}_{R}^{\mathcal{O}(p^{4})} &= -\frac{1}{M_{R}^{2}} \left(\left\langle \chi_{R}^{\mu\nu} \chi_{R\mu\nu} \right\rangle - \frac{1}{N} \left\langle \chi_{R}^{\mu\nu} \right\rangle^{2} \right) & (R = V, A) \,, \\ \Delta \mathcal{L}_{R_{1}}^{\mathcal{O}(p^{4})} &= \frac{1}{2M_{R_{1}}^{2}} \left(\chi_{R_{1}} \right)^{2} & (R_{1} = S_{1}, P_{1}) \,, \\ \Delta \mathcal{L}_{R_{1}}^{\mathcal{O}(p^{4})} &= -\frac{1}{M_{R_{1}}^{2}} \left(\chi_{R_{1}}^{\mu\nu} \chi_{R_{1}\mu\nu} \right) & (R_{1} = V_{1}, A_{1}) \,. \end{split}$$

• I could show you this,

$$\begin{split} \chi_{V}^{\mu\nu} &= \frac{F_{V}}{2\sqrt{2}} f_{+}^{\mu\nu} + \frac{iG_{V}}{2\sqrt{2}} [u^{\mu}, u^{\nu}] \\ &+ c_{V0}v J_{T}^{\mu\nu} \\ &+ \frac{c_{V1}}{2} \left(\nabla^{\mu} J_{V}^{\nu} - \nabla^{\nu} J_{V}^{\mu} \right) + \frac{ic_{V2}}{2} \left([J_{A}^{\mu}, u^{\nu}] - [J_{A}^{\nu}, u^{\mu}] \right) \\ &+ \frac{c_{V3}}{2} \left(\frac{(\partial^{\mu} h)}{v} J_{V}^{\nu} - \frac{(\partial^{\nu} h)}{v} J_{V}^{\mu} \right) \\ &+ c_{V4} e^{\mu\nu\alpha\beta} \{ J_{V\alpha}, u_{\beta} \} + c_{V5} e^{\mu\nu\alpha\beta} J_{A'\alpha\beta} , \end{split}$$

$$\chi_{A}^{\mu\nu} &= \frac{F_{A}}{2\sqrt{2}} f_{-}^{\mu\nu} + \frac{\lambda_{1}^{hA}}{\sqrt{2}} \left((\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu} \right) \\ &+ \frac{c_{A1}}{2} \left(\nabla^{\mu} J_{A}^{\nu} - \nabla^{\nu} J_{A}^{\mu} \right) + \frac{ic_{A2}}{2} \left([J_{V}^{\mu}, u^{\nu}] - [J_{V}^{\nu}, u^{\mu}] \right) \end{split}$$

• But it is more instructive to focus on a case (full R Lagrangian in *)

$$\mathcal{L}_{V} = Tr\{V_{\mu\nu} \left(\frac{F_{V}}{2\sqrt{2}}f_{+}^{\mu\nu} + \frac{iG_{V}}{2\sqrt{2}}[u^{\mu}, u^{\nu}] + c_{V1}\nabla^{\mu}J_{V}^{\nu} + ...\right)\}$$

$$\chi_{V}^{\mu\nu}$$

• Integrate out V:

