

EUROPEAN PHYSICAL SOCIETY HEP2015 EUROPEAN PHYSICAL SOCIETY **CONFERENCE ON HIGH ENERGY PHYSICS 2015** 22 - 29 JULY 2015 **VIENNA, AUSTRIA**

Prospects of the High Luminosity LHC from CMS and ATLAS

Alessia Tricomi University and INFN Catania, Italy on behalf of the ATLAS and CMS Collaborations

The Past-Present-Future of LHC

We are here!

ATLAS & CMS Detector upgrade

Must cope with: High pile-up High radiation level

Different technologies will be used in the Phase-II upgrade, but common strategy:

 \rightarrow Re-visit the L1 trigger logic to keep leptons p_T thresholds and L1 trigger rates low

New Tracker with high granularity and radiation resistance and extended η coverage

Extension of detectors coverage to increase acceptance and improve performances

Lot of talks in the Detector session

Physics program at HL-LHC

Huge Physics program addressing

- ★ Precision studies of the 125 GeV Higgs boson (couplings, rare decays, etc.)
- *****Searches/studies for BSM Physics
 - ➡ Higgs
 - SUSY
 - Vector Boson Scattering (VBS)
 - ➡ Exotics
 - → DM

ATLAS Performance studies

Performance assessed in benchmark channels using full simulation

- ★ Run 2 detector and $<\mu>=60$, 300 fb⁻¹
- ★ New tracker (ITK) in Run 1 Calorimeter and Muon system, with varying <µ> up to 2000 and for 3000 fb⁻¹
- ★ Physics reach (mostly) based on generator level studies with parameterized performance

CMS Performance studies

Performance assessed in benchmark channel using full simulation

- ★ Phase 1 detector and $<\mu>=50$, 300 fb⁻¹
- ★ Phase 1 detector (aging but pixel) and <µ>=140, 1000 fb⁻¹
- ★ Phase 2 detector and $<\mu>=140$, 1000 fb⁻¹

Physics reach (mostly) based on extrapolation under different assumptions on uncertainties or Delphes

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

Prospects for Higgs Physics

HL-LHC: a Higgs factory!

- ★ Enable precision measurements:
 - Signal strength
 - Spin/parity
 - Couplings
- ★ New measurements:
 - Rare decays (H→µµ, H→Zγ)
 - Double Higgs boson production (self couplings)
 - Higgs portal to New Physics

Higgs bosons at $\sqrt{s}=14 \text{ TeV} 3000 \text{ fb}^{-1}$				
HL-LHC total	170 M			
VBF (main decays)	I3M			
ttH (main decays)	I.8M			
H→Zγ	230k			
H→µµ	37k			
HH (all)	121k			

Given cross sections from LHCHXSWG

Higgs rare decays: $H \rightarrow Zy$

- Largely benefit from dataset increase due to HL
- In the SM the decay proceeds entirely via loops
- Sensitive to New Phyics (i.e. Higgs composite) models) > 10¹⁰

—Z → uu

–WW→ μνμν

 $H \rightarrow \mu\mu, m_1 = 125 \text{ GeV}$

 $-\gamma/Z$

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}$

 $L dt = 3000 \text{ fb}^{-1}$

mmm-

mmm

 3.9σ expected

 10^{6}

10⁵

ggF, VE ⊉ 10⁸

Challer $\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}}}}}}}}}}}$

+jet ba

Not-Hi

- CMS expects 20/24% uncertainty with scenario 2 (1/2 th. uncert.)/1 (same RUN1 th uncert.)
- ATLAS expects 30% uncertainty \star
- Signal strength error dominated by statistical one

mmm

Z

Higgsrare decays: H→µµ Scenario 1 Scenario 2

- → Largely benefit from dataset increase due to HL
 → Probe the 2nd generation couplings
 30 ER 0(10⁻⁴) ± 0.16 ± 0.12
- 3000F, VBF, VH, OtPloroduction 0. 4
 - ➡ Backgrounds: Zjets, tt, WW

ℒ(fb⁻¹)

excellent di-muon mass resolution is crucial

Expects observation with > 7.0σ

		µ-hat error				
	$\mathscr{L}(fb^{-I})$	Scenario I	Scenario 2			
ATLAS	300	± 0.39	± 0.38			
CMS	300	± 0.42	± 0.40			
ATLAS	3000	± 0.16	± 0.12			
CMS	3000	± 0.20	± 0.14			

ATLAS scenarios: 1- full sys 2- no theory sys CMS scenarios: 1- run-1 sys 2- reduced sys CERN-LHC-2015-010 CMS NOTE-13-002

Phase2: 40% better mass resolution, 20% higher efficiency wrt aged-Phase1

Higgs couplings fit

The hashed areas indicate the

oduction H pair production

- One of the exciting prospects @ HL-LHC:
 - Higgs self-coupling
 - accessing the Higgs potential
 - sensitive to BSM Physics

ATL-PHYS-PUB-2014-019

= H(bb)H($\gamma\gamma$)

Z(bb)H(γγ)

bbH(γγ)

100

150

ATLAS Simulation Preliminary

√s=14 TeV, 3000 fb⁻

─ tīX

 $H(b\overline{b})H(\gamma\gamma)$

bbγγ
 Others

200

 $m_{\gamma\gamma}$ [GeV]

250

tt̄H(γγ)

.5 GeV

Events/2.

25

20

15

0∟ 50

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	40,000
$bb + W^+W^-$	25%	31,000
$b\overline{b} + \tau^+\tau^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^- + \tau^+\tau^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma\gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

 SM cross-section decreases • Cross section at $\sqrt{s} = 14$ TeV is 40.7 fb [NNLO] (Phys. Rev. Lett. 111 - 2013)-201 8 25 - ATLAS Simula ATLAS Simulation Preliminary √s=14 TeV. 3000 fb⁻¹ √s=14 TeV, PU=140 S 💻 tτ̄H(γγ) H(bb)H(γγ) Events/2. bbyy 20 bbH(γγ) − tīX **b**bγγ Z(bb)H(γγ) Others CERN-LHC-2015-010 15 $H(b\overline{b})H(\gamma\gamma)$ **CMS NOTE-13-002** Small cross-section and 10 huge resonant (single H) and non resonant bkg ominal Luminosity 250 100 150 200 m_{γγ} [GeV] CMS has evaluated the impact on the Integrated Luminosity [10³ fb⁻¹ analysis as the b-tagging and photon S and CMS are discussing the analyses to cor identification efficiencies change differences and explore avenues for

ATLAS and CMS expects ~ 8-9 events after trigger and event selections corresponding to a signal significance of ~1.3 σ per exp for the SM scenario

Destructive interferance

H pair production

CMS also studied $bb\tau\tau$ channel in $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ final states and expects a combined signal significance of 0.9 σ in bb $\tau\tau$ channel

> CERN-LHC-2015-010 CMS NOTE-13-002

Combining *bbyy* and *bbττ* final states CMS expects 1.9σ significance with an uncertainty of ~ 54%

Significant improvements in future studies of di-H signatures are expected by ATLAS and CMS by combining more channels and also using MVA analysis technique

Prospects for SUSY @ HL-LHC

Search for SUSY is a major goal for Run2 & HL-LHC

- ★ Higgs discovery poses new urgency to the hierarchy problem
- ★ Candidate for DM
- ★ Gauge unification

Prospects for SUSY using

- ATLAS: Simplified SUSY Models and benchmark configurations
- ★ CMS: Simplified SUSY model and Full Spectrum models (new!)
 - Five phenomenological models motivated by naturalness explored through a number of signature-based searches
 - Models differ by nature of the LSP (bino-, higgsino-like), EWK-inos and sleptons hierarchies
 - STC (stau) and STOC (stop) coannihilation models satisfy dark matter constraints

11

Analysis	Luminosity			Model		
	$({\rm fb}^{-1})$	NM1	NM2	NM3	STC	STOC
all-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	300					
	3000					
all-hadronic (M_{T2}) search	300					
	3000					
all-hadronic \widetilde{b}_1 search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
_	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

$\chi^{\pm}\chi^{0}$ searches @ HL-LHC

Factor 10x in luminosity essential to probe pair production of EWK-inos expected to be light from naturalness arguments

Stop/sbottom searches @ HL-LHC

Exotica @ HL-LHC

A broad range of models can benefit of increased statistics

6.7 TeV

Looking for an excess in monolepton or mono-jet channels

Looking for anomalous dE/dx, displayed secondary vertices, slow moving tracks...for massive stable or long-lived particles

ATL-PHYS-PUB-2015-004

ATL-PHYS-PUB-2014-007

3000 fb⁻¹

7.8 TeV

Summary

- The discovery of the Higgs boson at LHC-Run1 has opened the door towards a deeper understanding of particle Physics
- With the start of RUN2 with the unprecedented energy of 13 TeV we are now focussing even more in the searches for New Physics and precision Higgs studies
- The HL-LHC with a ten times more luminosity will offer unique opportunities to explore the Higgs sector and will represent an excellent probe for high scale New Physics
 - the 3000/fb dataset at 14 TeV will allow large gains in precision, discovery potential, and will make a number of important, low cross-section measurements possible
- Detector upgrade foreseen by ATLAS and CMS will ensure optimal performances despite the very hostile environment
- Lot of work is ongoing to be ready and well prepared for this new exciting LHC-era...

... The best maybe should still come...

Back-up

In composite Higgs models: large Z_{γ} , while $\gamma\gamma$ and gg are small Measurement of Z_{γ} will profit of HL-LHC

Coupling uncertainties

ATLAS, estimate of the maximum theory uncertainty compatible with <10% increase of total uncertainty in 3000/fb

CMS, scaling of signal and background yields as: Systematic uncertainties remain the same (scenario 1) Theoretical uncertainties scaled by 1/2, other systematic uncertainties scaled by 1/√L (scenario 2)

Scenario	Status 2014	Dec by ≲	duced siz	e of uncer 300 fb ⁻¹	tainty 	to increa by ≲109	se total % for 30	uncerta 00 fb ⁻¹	inty
Theory uncertainty (%)	[10-12]	K _{gZ}	λ_{gZ}	Ayz	KgZ	AyZ.	λ_{gZ}	$\lambda_{\tau Z}$	Aig
$gg \rightarrow H$									
PDF	8	2			1.3	-	:	-	÷
incl. QCD scale (MHOU)	7	2	÷	14.5	1.1	-	1.4		240
p_T shape and $0j \rightarrow 1j$ mig.	10-20	-	3.5-7	- Sec	-	1.5-3	1.2	2	÷
$1j \rightarrow 2j$ mig.	13-28	÷.	-	6.5-14	21	3.3-7			- 20
$1j \rightarrow VBF 2j mig.$	18-58	-	-	-	-	-	6-19	-	-
VBF $2j \rightarrow VBF 3j$ mig.	12-38	-	-	-	-	-	-	6-19	-
VBF PDF	3.3	-	-			-	2.8	-	
tīH									
PDF	9		2	1	S2	<u>.</u>		-	3
incl. QCD scale (MHOU)	8			20	- I	<u></u>	12	<u> </u>	2

HL-LHC improves by 2-3x 2-3% uncertainty on ratios in scenario 2

expected uncertainty

Mass dependence of couplings

$$y_{V,i} = \sqrt{\kappa_{V,i}} \frac{g_{V,i}}{2v} = \sqrt{\kappa_{V,i}} \frac{m_{V,i}}{v}$$

$$y_{F,i} = \kappa_{F,i} \frac{g_{F,i}}{\sqrt{2}} = \kappa_{F,i} \frac{m_{F,i}}{v}$$

$$M_{F,i} = \frac{10^{-1}}{10^{-1}}$$

$$M_{F,i} = \frac{10^{-2}}{10^{-3}}$$

$$M_{F,i} = \frac{10^{-2}}{10^{-3}}$$

$$M_{F,i} = \frac{10^{-2}}{10^{-3}}$$

HH→bbγγ @ ATLAS

process	Expected events in 3000 fb ⁻¹
SM HH→bbγγ	8.4± 0.1
bbyy	9.7 ± 1.5
ccyy, bbyj, bbjj, jjyy	24.1 ± 2.2
top background	3.4 ± 2.2
ttH(γγ)	6.1 ± 0.5
Z(bb)H(γγ)	2.7 ± 0.1
bbH(γγ)	1.2 ± 0.1
Total background	47.1 ± 3.5
S/VB (barrel+endcap)	1.2
S/VB (split barrel and endcap)	1.3

Vector Boson Scattering (VBS)

New Physics may appear in the unitarization of longitudinal VBS Sensitive to New Physics also through Anomalous Quartic Gauge Couplings

Full spectrum SUSY

Higgs sector with m_h=125 GeV

all-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	(fb^{-1}) 300	NM1	NM2	NIN (O		a-a =
all-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	300		1 11/14	IN IVI 3	STC	STOC
	3000					
all-hadronic (M_{T2}) search	300					
	3000					
all-hadronic \tilde{b}_1 search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

CMS PAS SUS-14-012

Five phenomenological models motivated by naturalness explored through a number of signature-based searches

- Models differ by nature of the LSP (bino-, higgsino-like), EWK-inos and sleptons hierarchies
- STC (stau) and STOC (stop) co-annihilation models satisfy dark matter constraints

Light sbottom, stop, higgsino, gluino

Natural Models

 b_2

 $\widetilde{t}_2 \ \widetilde{b}_1$

 \widetilde{t}_1

CMS $\mathcal{X}^{\pm}\mathcal{X}^{0}$ searches

J

300/fb

3000/fb

-				-	
Sample	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 300 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 400 {\rm GeV}$		
	25% I	Background Uncert	tainty		
WH signal (200,1)	1.7	1.8	1.5		WH sig
WH signal (500,1)	1.4	2.9	3.9		WH sig
WH signal (900,1)	-	0.4	1.3		WH sig
Natural Model 2	0.6	1.2	1.3		Natur
	12.5%	Background Uncer	rtainty		
WH signal (200,1)	3.2	2.6	1.8	-	WH sig
WH signal (500,1)	2.6	4.4	4.5		WH sig
WH signal (900,1)	0.2	0.7	1.5		WH sig
Natural Model 2	1.2	1.8	1.5		Natur
				-	

$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 300 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 400 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 500 {\rm GeV}$
	25% Backgrour	nd Uncertainty	
2.8	1.9	4.3	5.5
1.4	3.0	7.6	6.9
-	0.4	2.5	4.7
0.6	1.3	2.9	2.4
	12.5% Backgrou	Ind Uncertainty	
5.8	3.8	6.7	6.8
2.9	5.9	12	8.6
-	0.9	3.9	5.8
1.4	2.7	4.7	3.0
	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$ 2.8 1.4 - 0.6 5.8 2.9 - 1.4	$\begin{array}{c c} E_{\rm T}^{\rm miss} > 200 {\rm GeV} & E_{\rm T}^{\rm miss} > 300 {\rm GeV} \\ \hline 25\% {\rm Backgroun} \\ \hline 2.8 & 1.9 \\ 1.4 & 3.0 \\ - & 0.4 \\ 0.6 & 1.3 \\ \hline 0.6 & 1.3 \\ \hline 12.5\% {\rm Backgroun} \\ \hline 5.8 & 3.8 \\ 2.9 & 5.9 \\ - & 0.9 \\ 1.4 & 2.7 \\ \end{array}$	$\begin{array}{ll} E_{\rm T}^{\rm miss} > 200 {\rm GeV} & E_{\rm T}^{\rm miss} > 400 {\rm GeV} \\ \hline & 25\% {\rm Backgrout} {\rm Uncertainty} \\ \hline & 2.8 & 1.9 & 4.3 \\ \hline & 1.4 & 3.0 & 7.6 \\ \hline & 0.4 & 2.5 \\ \hline & 0.6 & 1.3 & 2.9 \\ \hline & 12.5\% {\rm Backgrout} {\rm Uncertainty} \\ \hline & 1.4 & 0.9 & 3.9 \\ \hline & 1.4 & 2.7 & 4.7 \\ \hline \end{array}$

ATLAS $\mathcal{X}^{\pm}\mathcal{X}^{0}$ searches

WZ Se	WZ Selection						
Selection	SRA	SRB	SRC	SRD			
$m_{\rm SFOS}[{\rm GeV}]$		81.2-	101.2				
# b-tagged jets		()				
lepton p_T (1,2,3)[GeV]		>	50				
$E_{\rm T}^{\rm miss}[{ m GeV}]$	> 250	> 300	> 400	> 500			
$m_{\rm T}$ [GeV]	> 150	> 200	> 200	> 200			
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{ scenario}$	yes	yes	yes	_			
$\langle \mu \rangle = 140, 3000 \text{fb}^{-1} \text{ scenario}$	yes	yes	yes	yes			

Wh	Se	ection	(3I)

Selection	SRE	SRF	SRG	SRH	
SFOS pair	veto				
# b-tagged jets	0				
$E_{\rm T}^{\rm miss}$ [GeV]	> 100				
$m_{OS}^{\min\Delta R}$ [GeV]	< 75				
$m_{\rm T}(\ell_1)$ [GeV]	> 200	> 200	> 300	> 400	
$m_{\rm T}(\ell_2)$ [GeV]	> 100	> 150	> 150	> 150	
$m_{\rm T}(\ell_3)$ [GeV]	> 100	> 100	> 100	> 100	
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{ scenario}$	yes	yes	yes		
$\langle \mu \rangle = 140, 3000 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	yes	

Wh Selection (1I2τ)

$\# e, \mu$	1
# τ	2 (OS)
# b-tagged jets	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 250
$m_{\tau\tau}$ [GeV]	80-130
$p_T(\tau_1) + p_T(\tau_2) $ [GeV]	> 190
$m_{\rm T}(\ell)$ [GeV]	> 130

Sample	SRA	SRB	SRC	SRA	SRB	SRC	SRD
Scenario	300 ID ⁻¹ , μ=60		3000 fb ⁻¹ , μ=140				
WZ	9.60±0.32	4.59±0.22	1.91±0.14	200±5	59.4±2.5	22.0±1.5	8.3±1.0
ZZ	0	0	0	0	0	0	0
VVV	2.11±0.18	1.07 ± 0.13	0.44 ± 0.08	24.3±1.9	12.1±1.4	5.4 ± 0.8	2.0 ± 0.5
Wh	0	0	0	0	0	0	0
$t\bar{t}V$	0.67±0.19	0.23±0.12	0	14.4 ± 2.8	4.2±1.6	0.31±0.31	0
tī	0	0	0	0	0	0	0
Σ ΜC	12.4±0.4	5.89±0.28	2.35±0.16	239±6	75.6±3.3	27.7±1.8	10.3±1.1
WZ-mediated							
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (400, 0) \text{ GeV}$	38.5±0.6	20.1±0.5	5.47 ± 0.23	407±6	224±5	67.9±2.6	19.7±1.4
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (600, 0) \text{ GeV}$	19.40 ± 0.20	14.69 ± 0.17	7.76 ± 0.12	194.8 ± 2.0	148.9 ± 1.7	81.6±1.3	33.5 ± 0.8
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (800, 0) \text{ GeV}$	6.97 ± 0.06	5.90 ± 0.06	4.21±0.05	69.6±0.6	59.1±0.6	42.4±0.5	25.2 ± 0.4
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (1000, 0) \text{ GeV}$	2.31±0.02	2.05 ± 0.02	1.64 ± 0.02	22.94±0.19	20.42 ± 0.18	16.36±0.16	11.55 ± 0.14

ATL-PHYS-PUB-2014-010

ATLAS $\chi^{\pm}\chi^{0}$ searches: Wh(bb)

Selection	SRA	SRB	SRC	SRD
# of leptons (e, μ)	1			
# b-tagged jets	2			
m_{bb} [GeV]	$105 < m_{bb} < 135$			
# jets	2 or 3			
$m_{\rm CT} [{\rm GeV}]$	> 200	> 200	> 300	> 300
$m_{\rm T}$ [GeV]	> 200	> 250	> 200	> 250
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 350	> 400	> 450
$\langle \mu \rangle = 60, 300 \text{fb}^{-1} \text{ scenario}$	yes	yes	_	_
$\langle \mu \rangle = 140, 3000 \text{fb}^{-1} \text{ scenario}$	-	-	yes	yes

SR	Training Sample [GeV]	BDT range
	$(m(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}), m(\tilde{\chi}_1^0))$	
M1	(300,0)	> 0.22
M2	(800,400)	> 0.35
M3	(1300,0)	> 0.28

ATL-PHYS-PUB-2015-032

	M1	M2	M3
Expected events	73 ± 12	10 ± 4	10 ± 4
<i>tī</i> events	58 ± 11	4.7 ± 2.9	8 ± 4
single top events	4.1 ± 2.4	_	_
W+jets events	4.1 ± 2.9	4.0 ± 2.8	_
$t\bar{t} + V$ events	4.5 ± 1.5	1.8 ± 1.0	1.5 ± 0.9
Other SM events	2.5 ± 1.5	_	-
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}) = 600 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV events}$	77 ± 5	69 ± 5	59 ± 4
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}) = 500 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV} \text{ events}$	9.1 ± 2.0	1.2 ± 0.7	1.2 ± 0.7
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}) = 1000 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$ events	11.2 ± 0.4	15.7 ± 0.6	18.9 ± 0.7

	SRC	SRD
Expected events	30 ± 6	15 ± 4
<i>tī</i> events	18 ± 5	11 ± 4
single top events	5.4 ± 2.7	2.7 ± 1.9
$t\bar{t} + V$ events	3.8 ± 1.5	1.9 ± 1.1
Other SM events	2.8 ± 2.2	-
$\overline{m(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm})} = 600 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV events}$	83.7 ± 3.3	51 ± 4
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}) = 500 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$ events	2.1 ± 0.9	0.8 ± 0.6
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}) = 1000 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV events}$	20.0 ± 0.8	16.8 ± 0.7

