$B \rightarrow K^{(*)}\nu\bar{\nu}$ decays in the Standard Model and beyond

Christoph Niehoff
in collaboration with A. Buras, J. Girrbach-Noe and D. Straub

based on 1409.4557

EPS Vienna
July 24, 2015
Why should one look for $B \rightarrow K^{(*)}\nu\bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
 - In particular: new right-handed interactions absent in the SM
 - Theoretically very clean: No uncertainties from non-factorizable long-range photon exchange
 - Recent theory progress allows to get much better SM predictions

- New measurements on $B \rightarrow K^{(*)}\nu\bar{\nu}$ allow to put strong constraints

- Hopefully, these decays will be accessible within the next few years
Why should one look for $B \rightarrow K^{(*)}\nu\bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
 - In particular: new right-handed interactions absent in the SM
Why should one look for $B \rightarrow K^{(*)}\nu\bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
 - In particular: new right-handed interactions absent in the SM
- Theoretically very clean
 - No uncertainties from non-factorizable long-range photon exchange
Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
 → In particular: new right-handed interactions absent in the SM
- Theoretically very clean
 → No uncertainties from non-factorizable long-range photon exchange
- Recent theory progress allows to get much better SM predictions
Why should one look for $B \rightarrow K^{(*)}\nu\bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
 → In particular: new right-handed interactions absent in the SM
- Theoretically very clean
 → No uncertainties from non-factorizable long-range photon exchange
- Recent theory progress allows to get much better SM predictions
- New measurements on $B \rightarrow K^{(*)}\ell^+\ell^-$ allow to put strong constraints
Why should one look for $B \rightarrow K^{(*)}\nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
 → In particular: new right-handed interactions absent in the SM
- Theoretically very clean
 → No uncertainties from non-factorizable long-range photon exchange
- Recent theory progress allows to get much better SM predictions
- New measurements on $B \rightarrow K^{(*)}\ell^+\ell^-$ allow to put strong constraints
- Hopefully, these decays will be accessible within the next few years
1 SM predictions

2 Model independent constraints
 - General remarks
 - Correlations with $B \rightarrow K^{(*)}\ell^+\ell^-$ decays

3 Conclusion
SM predictions

Model independent constraints
- General remarks
- Correlations with $B \to K^{(*)} \ell^+ \ell^-$ decays

Conclusion
In the SM only one eff. operator contributes to $b \to s\nu\bar{\nu}$ transitions.
In the SM only one eff. operator contributes to $b \to s \nu \bar{\nu}$ transitions.

We have to control:

- Wilson coefficient C_L^{SM}
 - \to two-loop electroweak contributions (Brod,Gorbahn,Stamou 1009.0947)

- hadronic form factors $\rho(q^2)$
 - \to combined fit to LCSR and lattice results (Bharucha,Straub,Zwicky 1503.05534)
updated SM predictions

\[10^6 \, \frac{d}{dq^2} \text{BR}(B^+ \to K^+ \nu \bar{\nu}) \]

\[10^6 \, \frac{d}{dq^2} \text{BR}(B^0 \to K^{*0} \nu \bar{\nu}) \]

\[
\text{BR}(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}} = (3.98 \pm 0.43 \pm 0.19) \times 10^{-6} \\
< 1.7 \times 10^{-5} \text{ (BaBar)}
\]

\[
\text{BR}(B^0 \to K^{*0} \nu \bar{\nu})_{\text{SM}} = (9.19 \pm 0.86 \pm 0.50) \times 10^{-6} \\
< 5.5 \times 10^{-5} \text{ (Belle)}
\]

\[F^\text{SM}_L = 0.47 \pm 0.03 \]
SM predictions

Model independent constraints
- General remarks
- Correlations with $B \to K(\ast) \ell^+ \ell^-$ decays

Conclusion
General remarks

Beyond the SM, a second eff. operator can contribute (right-handed currents!):

\[\mathcal{H}_{\text{eff}} \propto C_L \mathcal{O}_L + C_R \mathcal{O}_R + \text{h.c.}, \]

\[\mathcal{O}_L \propto (\bar{s}\gamma_\mu P_L b)(\bar{\nu}\gamma^\mu P_L \nu) \]

\[\mathcal{O}_R \propto (\bar{s}\gamma_\mu P_R b)(\bar{\nu}\gamma^\mu P_L \nu) \]
General remarks

Beyond the SM, a second eff. operator can contribute (right-handed currents!):

\[H_{\text{eff}} \propto C_L O_L + C_R O_R + \text{h.c.}, \]

\[O_L \propto (\bar{s}\gamma_\mu P_L b)(\bar{\nu}\gamma^\mu P_L \nu) \]
\[O_R \propto (\bar{s}\gamma_\mu P_R b)(\bar{\nu}\gamma^\mu P_L \nu) \]

Reparametrize Wilson coefficients:

\[\epsilon = \frac{\sqrt{|C_L|^2 + |C_R|^2}}{|C_L^{\text{SM}}|} \]
\[\eta = \frac{-\text{Re}(C_L C_R^*)}{|C_L|^2 + |C_R|^2} \]
Beyond the SM, a second eff. operator can contribute (right-handed currents!):

\[\mathcal{H}_{\text{eff}} \propto C_L \mathcal{O}_L + C_R \mathcal{O}_R + \text{h.c.}, \]

\[\mathcal{O}_L \propto (\bar{s} \gamma_\mu P_L b)(\bar{\nu} \gamma^\mu P_L \nu) \]

\[\mathcal{O}_R \propto (\bar{s} \gamma_\mu P_R b)(\bar{\nu} \gamma^\mu P_L \nu) \]

Reparametrize Wilson coefficients:

\[\epsilon = \frac{\sqrt{|C_L|^2 + |C_R|^2}}{|C_L^{\text{SM}}|} \]

\[\eta = \frac{-\text{Re}(C_L C_R^*)}{|C_L|^2 + |C_R|^2} \]

\[R_K \equiv \frac{\text{BR}(\to K)}{\text{BR}(\to K)^{\text{SM}}} = (1 - 2 \eta) \epsilon^2 \]

\[R_{K^*} \equiv \frac{\text{BR}(\to K^*)}{\text{BR}(\to K^*)^{\text{SM}}} = (1 + 1.34 \eta) \epsilon^2 \]

\[R_{F_L} \equiv \frac{F_L}{F_L^{\text{SM}}} = \frac{1 + 2 \eta}{1 + 1.34 \eta} \]
General remarks

Beyond the SM, a second eff. operator can contribute (right-handed currents!):

\[\mathcal{H}_{\text{eff}} \propto C_L \mathcal{O}_L + C_R \mathcal{O}_R + \text{h.c.}, \]

Reparametrize Wilson coefficients:

\[\epsilon = \frac{\sqrt{|C_L|^2 + |C_R|^2}}{|C_L|^2 + |C_R|^2} \]
\[\eta = \frac{-\text{Re}(C_L C_R^*)}{|C_L|^2 + |C_R|^2} \]

\[\mathcal{R}_K \equiv \frac{\text{BR}(\rightarrow K)}{\text{BR}(\rightarrow K)^{\text{SM}}} = (1 - 2\eta)\epsilon^2 \]
\[\mathcal{R}_{K^*} \equiv \frac{\text{BR}(\rightarrow K^*)}{\text{BR}(\rightarrow K^*)^{\text{SM}}} = (1 + 1.34\eta)\epsilon^2 \]
\[\mathcal{R}_{F_L} \equiv \frac{F_L}{F_L^{\text{SM}}} = \frac{1 + 2\eta}{1 + 1.34\eta} \]

if \(\mathcal{R}_K \neq \mathcal{R}_{K^*} \)

\[\Rightarrow \text{right-handed currents!} \]
General remarks

Beyond the SM, a second eff. operator can contribute (right-handed currents!):

\[H_{\text{eff}} \propto C_L O_L + C_R O_R + \text{h.c.}, \]

Reparametrize Wilson coefficients:

\[\epsilon = \frac{\sqrt{|C_L|^2 + |C_R|^2}}{|C_L^{\text{SM}}|} \]

\[\eta = \frac{-\text{Re}(C_L C_R^*)}{|C_L|^2 + |C_R|^2} \]

If \(R_K \neq R_{K^*} \)

\[\Rightarrow \text{right-handed currents!} \]

Correlations in \(R_K, R_{K^*}, R_{F_L} \)

\[\Rightarrow \text{new invisible particles in final state?} \]
Correlations with $B \rightarrow K^{(*)} \ell^+ \ell^-$ decays

Idea: Use SU(2)$_L$ symmetry to connect $b \rightarrow s \nu \bar{\nu}$ decays to $b \rightarrow s \ell^+ \ell^-$ decays, on which a lot of exp. data exists.
Correlations with $B \to K^{(*)}\ell^+\ell^-$ decays

Idea: Use SU(2)$_L$ symmetry to connect $b \to s\nu\bar{\nu}$ decays to $b \to s\ell^+\ell^-$ decays, on which a lot of exp. data exists.

Use most general \mathcal{G}_{SM}-invariant basis of dim6-operators. (Grzadkowski et al. 1008.4884)

$$
Q^{(1)}_{Hq} = i(\bar{q}_L\gamma_\mu q_L)H^\dagger D^\mu H, \quad Q^{(1)}_{ql} = (\bar{q}_L\gamma_\mu q_L)(\bar{I}_L\gamma^\mu l_L),
$$

$$
Q^{(3)}_{Hq} = i(\bar{q}_L\gamma_\mu \tau^a q_L)H^\dagger D^\mu \tau_a H, \quad Q^{(3)}_{ql} = (\bar{q}_L\gamma_\mu \tau^a q_L)(\bar{I}_L\gamma^\mu \tau_a l_L),
$$

$$
Q_{Hd} = i(\bar{d}_R\gamma_\mu d_R)H^\dagger D^\mu H, \quad Q_{dl} = (\bar{d}_R\gamma_\mu d_R)(\bar{I}_L\gamma^\mu l_L),
$$

$$
Q_{de} = (\bar{d}_R\gamma_\mu d_R)(\bar{e}_R\gamma^\mu e_R), \quad Q_{qe} = (\bar{q}_L\gamma_\mu q_L)(\bar{e}_R\gamma^\mu e_R)
$$
Correlations with $B \to K(\ast) \ell^+ \ell^-$ decays

Idea: Use SU(2)$_L$ symmetry to connect $b \to s \nu \bar{\nu}$ decays to $b \to s \ell^+ \ell^-$ decays, on which a lot of exp. data exists.

Use most general G_{SM}-invariant basis of dim6-operators. (Grzadkowski et al. 1008.4884)

$$Q^{(1)}_{Hq} = i(\bar{q}_L \gamma_\mu q_L) H^\dagger D^\mu H ,$$

$$Q^{(1)}_{ql} = (\bar{q}_L \gamma_\mu q_L)(\bar{l}_L \gamma^\mu l_L) ,$$

$$Q^{(3)}_{Hq} = i(\bar{q}_L \gamma_\mu \tau^a q_L) H^\dagger D^\mu \tau^a H ,$$

$$Q^{(3)}_{ql} = (\bar{q}_L \gamma_\mu \tau^a q_L)(\bar{l}_L \gamma^\mu \tau^a l_L) ,$$

$$Q_{Hd} = i(\bar{d}_R \gamma_\mu d_R) H^\dagger D^\mu H ,$$

$$Q_{dl} = (\bar{d}_R \gamma_\mu d_R)(\bar{l}_L \gamma^\mu l_L) ,$$

$$Q_{de} = (\bar{d}_R \gamma_\mu d_R)(\bar{e}_R \gamma^\mu e_R) ,$$

$$Q_{qe} = (\bar{q}_L \gamma_\mu q_L)(\bar{e}_R \gamma^\mu e_R) .$$

$$O_L \propto (\bar{s} \gamma_\mu P_L b)(\bar{\nu} \gamma^\mu P_L \nu)$$

$$O_9 \propto (\bar{s} \gamma_\mu P_L b)(\bar{\ell} \gamma^\mu \ell)$$

$$O_R \propto (\bar{s} \gamma_\mu P_R b)(\bar{\nu} \gamma^\mu P_L \nu)$$

$$O_9' \propto (\bar{s} \gamma_\mu P_R b)(\bar{\ell} \gamma^\mu \ell)$$

$$O_{10} \propto (\bar{s} \gamma_\mu P_L b)(\bar{\ell} \gamma^\mu \gamma_5 \ell)$$

$$O_{10}' \propto (\bar{s} \gamma_\mu P_R b)(\bar{\ell} \gamma^\mu \gamma_5 \ell)$$
Idea: Use SU(2)_L symmetry to connect $b \to s\nu\bar{\nu}$ decays to $b \to s\ell^+\ell^-$ decays, on which a lot of exp. data exits.

Use most general G_{SM}-invariant basis of dim6-operators. (Grzadkowski et al. 1008.4884)
So, one finds a dictionary:

\[
C_L = C_{L}^{SM} + \tilde{c}_{q_l}^{(1)} - \tilde{c}_{q_l}^{(3)} + \tilde{c}_Z, \\
C_9 = C_{9}^{SM} + \tilde{c}_{q_e} + \tilde{c}_{q_l}^{(1)} + \tilde{c}_{q_l}^{(3)} - 0.08 \tilde{c}_Z, \\
C_{10} = C_{10}^{SM} + \tilde{c}_{q_e} - \tilde{c}_{q_l}^{(1)} - \tilde{c}_{q_l}^{(3)} + \tilde{c}_Z
\]

\[
C_R = \tilde{c}_{d_l} + \tilde{c}_{l'}_Z, \\
C'_9 = \tilde{c}_{d_e} + \tilde{c}_{d_l} - 0.08 \tilde{c}_Z, \\
C'_{10} = \tilde{c}_{d_e} - \tilde{c}_{d_l} + \tilde{c}_{l'}_Z
\]

with \(\tilde{c}_Z = \frac{1}{2}(\tilde{c}_{Hq}^{(1)} + \tilde{c}_{Hq}^{(3)}) \), \(\tilde{c}'_Z = \frac{1}{2} \tilde{c}_{Hd} \).
So, one finds a dictionary:

\[
C_L = C_L^{SM} + \tilde{c}_{ql}^{(1)} - \tilde{c}_{ql}^{(3)} + \tilde{c}_Z , \quad C_R = \tilde{c}_{dl} + \tilde{c}_Z ,
\]
\[
C_9 = C_9^{SM} + \tilde{c}_{qe} + \tilde{c}_{ql}^{(1)} + \tilde{c}_{ql}^{(3)} - 0.08 \tilde{c}_Z , \quad C_9' = \tilde{c}_{de} + \tilde{c}_{dl} - 0.08 \tilde{c}_Z ,
\]
\[
C_{10} = C_{10}^{SM} + \tilde{c}_{qe} - \tilde{c}_{ql}^{(1)} - \tilde{c}_{ql}^{(3)} + \tilde{c}_Z , \quad C_{10}' = \tilde{c}_{de} - \tilde{c}_{dl} + \tilde{c}_Z ,
\]

with \(\tilde{c}_Z = \frac{1}{2}(\tilde{c}_{Hq}^{(1)} + \tilde{c}_{Hq}^{(3)}) , \quad \tilde{c}_Z' = \frac{1}{2} \tilde{c}_{Hd} . \)

- Now, use \(b \rightarrow s \ell^+ \ell^- \) data to constraint the Wilson coefficients and see how large effects in \(b \rightarrow s \nu \bar{\nu} \) can still get. (Altmannshofer, Straub 1411.3161)
So, one finds a dictionary:

\[C_L = C_{L}^{\text{SM}} + \tilde{c}_{q_{l}}^{(1)} - \tilde{c}_{q_{l}}^{(3)} + \tilde{c}_{Z} , \]
\[C_{9} = C_{9}^{\text{SM}} + \tilde{c}_{q_{e}} + \tilde{c}_{q_{l}}^{(1)} + \tilde{c}_{q_{l}}^{(3)} - 0.08 \tilde{c}_{Z} , \]
\[C_{10} = C_{10}^{\text{SM}} + \tilde{c}_{q_{e}} - \tilde{c}_{q_{l}}^{(1)} - \tilde{c}_{q_{l}}^{(3)} + \tilde{c}_{Z} , \]
\[C_{R} = \tilde{c}_{d_{l}} + \tilde{c}_{Z} , \]
\[C'_{9} = \tilde{c}_{d_{e}} + \tilde{c}_{d_{l}} - 0.08 \tilde{c}_{Z} , \]
\[C'_{10} = \tilde{c}_{d_{e}} - \tilde{c}_{d_{l}} + \tilde{c}_{Z} , \]

with \(\tilde{c}_{Z} = \frac{1}{2}(\tilde{c}_{Hq}^{(1)} + \tilde{c}_{Hq}^{(3)}) \), \(\tilde{c}'_{Z} = \frac{1}{2} \tilde{c}_{Hd} \).

- Now, use \(b \to s\ell^{+}\ell^{-} \) data to constraint the Wilson coefficients and see how large effects in \(b \to s\nu\bar{\nu} \) can still get. (Altmannshofer, Straub 1411.3161)
- Consider only certain scenarios of NP where only a subset of operators is active.
Two different scenarios
Two different scenarios

NP dominated by:

- Modified (flavour changing) Z-couplings [e.g. MSSM, partial compositeness]

\[
\begin{align*}
C_L &= C_{L}^{\text{SM}} + \tilde{c}(1) q_{1} - \tilde{c}(3) q_{3} + \tilde{c} Z, \\
C_9 &= C_{9}^{\text{SM}} + \tilde{c}(1) q_{1} - \tilde{c}(3) q_{3} - 0.08 \tilde{c} Z, \\
C_{10} &= C_{10}^{\text{SM}} + \tilde{c}(1) q_{1} - \tilde{c}(3) q_{3} + \tilde{c} Z, \\
C_R &= \tilde{c} + \tilde{c}' Z, \\
C_9' &= \tilde{c} + \tilde{c}' - 0.08 \tilde{c}' Z, \\
C_{10}' &= \tilde{c} - \tilde{c}' + \tilde{c}' Z,
\end{align*}
\]
Two different scenarios

NP dominated by:

- Modified (flavour changing) Z-couplings [e.g. MSSM, partial compositeness]

\[
\begin{align*}
C_L &= C_{L}^{SM} + \tilde{c}_{q_l}^{(1)} - \tilde{c}_{q_l}^{(3)} + \tilde{c}_Z, \\
C_9 &= C_{9}^{SM} + \tilde{c}_{q_e} + \tilde{c}_{q_l}^{(1)} + \tilde{c}_{q_l}^{(3)} - 0.08 \tilde{c}_Z, \\
C_{10} &= C_{10}^{SM} + \tilde{c}_{q_e} - \tilde{c}_{q_l}^{(1)} - \tilde{c}_{q_l}^{(3)} + \tilde{c}_Z, \\
C_R &= \tilde{c}_d + \tilde{c}'_d, \\
C_9' &= \tilde{c}_{de} + \tilde{c}_{dl} - 0.08 \tilde{c}_Z, \\
C_{10}' &= \tilde{c}_{de} - \tilde{c}_{dl} + \tilde{c}'_d.
\end{align*}
\]

- 4-Fermion-Operators [e.g. exchange of heavy Z' boson]

\[
\begin{align*}
C_L &= C_{L}^{SM} + \tilde{c}_{q_l}^{(1)} - \tilde{c}_{q_l}^{(3)} + \tilde{c}_Z, \\
C_9 &= C_{9}^{SM} + \tilde{c}_{q_e} + \tilde{c}_{q_l}^{(1)} + \tilde{c}_{q_l}^{(3)} - 0.08 \tilde{c}_Z, \\
C_{10} &= C_{10}^{SM} + \tilde{c}_{q_e} - \tilde{c}_{q_l}^{(1)} - \tilde{c}_{q_l}^{(3)} + \tilde{c}_Z, \\
C_R &= \tilde{c}_d + \tilde{c}'_d, \\
C_9' &= \tilde{c}_{de} + \tilde{c}_{dl} - 0.08 \tilde{c}_Z, \\
C_{10}' &= \tilde{c}_{de} - \tilde{c}_{dl} + \tilde{c}'_d.
\end{align*}
\]
Model independent constraints Correlations with $B \to K^{(*)} \ell^+ \ell^-$ decays

Current $b \to s \ell^+ \ell^-$ data favour:

- Suppression of $\mathcal{R}_{K^{(*)}}$ if NP mainly in modified Z couplings
- Enhancement of $\mathcal{R}_{K^{(*)}}$ if NP mainly in 4-Fermion operators

blue: modified Z couplings
red: 4-Fermion operators

solid: real
dashed: complex
Model independent constraints

Correlations with $B \to K(*)\ell^+\ell^-$ decays

Current $b \to s\ell^+\ell^-$ data favour:

- Suppression of $\mathcal{R}_{K(*)}$ if NP mainly in modified Z couplings
- Enhancement of $\mathcal{R}_{K(*)}$ if NP mainly in 4-Fermion operators

Correlations between \mathcal{R}_K and \mathcal{R}_{K*} allow to disentangle both scenarios.

Due to tensions in $b \to s\ell^+\ell^-$.

\textbf{blue:} modified Z couplings
\textbf{red:} 4-Fermion operators
\textbf{solid:} real
\textbf{dashed:} complex
1. SM predictions

2. Model independent constraints
 - General remarks
 - Correlations with $B \to K(\ast) \ell^+ \ell^-$ decays

3. Conclusion
Conclusion

RH ν_τ, LH: $c_{ql}(1) = -c_{ql}(3)$ or ν_τ
RH or LH: LFV
RH LFU: disfavoured

RH ν_τ, RH: ν_e Z, LFU
MSSM

R_K: theoretically inaccessible

LH: $c_{ql}(1) = -c_{ql}(3)$ for certain PC scenarios
MSSM $SU(2)_L$ singlet or triplet LQ

$R_K \neq R_{K}^*$ enhancement:
hints to Z' dominated NP

$R_K \neq R_{K}^*$ suppression:
hints to NP in Z couplings

large effects only for $c_{ql}(1) = -c_{ql}(3)$ (e.g. certain LQ)
only couplings to τ and ν_τ
otherwise effects max.

$\pm 60\%$ LFU
$\pm 20\%$ only μ

Christoph Niehoff (EXC Universe, TUM)

Vienna, July 24, 2015
\[\mathcal{R}_K \neq \mathcal{R}_{K^*} \] problematic for

- MFV
- LH Z' couplings
- certain PC scenarios
- MSSM
- SU(2)\textsubscript{L} singlet or triplet LQ
\(R_K \neq R_K^* \) problematic for

- MFV
- LH \(Z' \) couplings
- certain PC scenarios
- MSSM
- SU(2)_L singlet or triplet LQ

\(R_K \neq R_K^* + \) enhancement: hints to \(Z' \) dominated NP
- $\mathcal{R}_K \neq \mathcal{R}_K^*$ problematic for
 - MFV
 - LH Z' couplings
 - certain PC scenarios
 - MSSM
 - SU(2)$_L$ singlet or triplet LQ

- $\mathcal{R}_K \neq \mathcal{R}_K^*$ + enhancement: hints to Z' dominated NP

- $\mathcal{R}_K \neq \mathcal{R}_K^*$ + suppression: hints to NP in Z couplings
\(\mathcal{R}_K \neq \mathcal{R}_K^* \) problematic for
- MFV
- LH \(Z' \) couplings
- certain PC scenarios
- MSSM
- SU(2)\(_L\) singlet or triplet LQ

\(\mathcal{R}_K \neq \mathcal{R}_K^* \) + enhancement:
 - hints to \(Z' \) dominated NP

\(\mathcal{R}_K \neq \mathcal{R}_K^* \) + suppression:
 - hints to NP in \(Z \) couplings

large effects only for
- \(c_{q_1}^{(1)} = -c_{q_1}^{(3)} \) (e.g. certain LQ)
- only couplings to \(\tau \) and \(\nu_\tau \)
- only LFV operators
\[\mathcal{R}_K \neq \mathcal{R}_K^* \] problematic for
- MFV
- LH \(Z' \) couplings
- certain PC scenarios
- MSSM
- SU(2)\(_L\) singlet or triplet LQ

\[\mathcal{R}_K \neq \mathcal{R}_K^* + \text{enhancement:} \]
- hints to \(Z' \) dominated NP

\[\mathcal{R}_K \neq \mathcal{R}_K^* + \text{suppression:} \]
- hints to NP in \(Z \) couplings

large effects only for
- \(c_{ql}^{(1)} = -c_{ql}^{(3)} \) (e.g. certain LQ)
- only couplings to \(\tau \) and \(\nu_\tau \)
- only LFV operators

otherwise effects max. \(\left\{ \begin{array}{ll} \pm 60\% \text{ LFU} \\ \pm 20\% \text{ only } \mu \end{array} \right. \)
Things to take home

Updated values for SM predictions for these decays

We still need a factor of ~ 5 in experimental precision

Belle2 can do this!

Moderate NP effects are still possible!

For some special cases even very large effects are still viable

Correlations between $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$ (and also $B \to K^*(\ell\ell)$ and $B_s \to \ell\ell$) can help to identify possible NP scenarios
Things to take home

- Updated values for SM predictions for these decays
Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of ~ 5 in experimental precision
 Belle2 can do this!
Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of ~ 5 in experimental precision. Belle2 can do this!
- Moderate NP effects are still possible!
Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of ~ 5 in experimental precision
 Belle2 can do this!
- Moderate NP effects are still possible!
- For some special cases even very large effects are still viable
Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of ~ 5 in experimental precision
 Belle2 can do this!
- Moderate NP effects are still possible!
- For some special cases even very large effects are still viable
- Correlations between $B \to K\nu\bar{\nu}$ and $B \to K^*\nu\bar{\nu}$ (and also $B \to K^{(*)}\ell\ell$ and $B_s \to \ell\ell$) can help to identify possible NP scenarios