

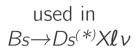
Semileptonic B and B_s decays at Belle

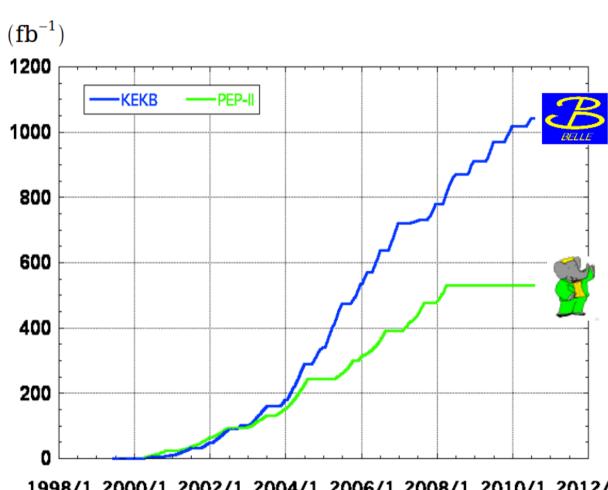
Robin Glattauer

for the Belle Collaboration

Outline and Motivation

- $B \rightarrow D \ell \nu$ (exclusive)
 - Determination of |Vcb|
 - First measurement of the channel with full Belle data sample
 - New results shown the first time today
 - Inclusive $(B \rightarrow Xc \ell \nu)$ exclusive $(B \rightarrow D^* \ell \nu)$ discrepancy
- $Bs \rightarrow Ds^{(*)}X\ell\nu$ (semi-inclusive)
 - Measurement of branching fractions
 - Test theory predictions for Bs


 $\ell = e, \mu$



> 1 ab⁻¹ On resonance:

Y(5S): 121 fb⁻¹

Y(4S): 711 fb⁻¹

 $Y(3S): 3 \text{ fb}^{-1}$

 $Y(2S): 25 \text{ fb}^{-1}$

Y(1S): 6 fb⁻¹
Off reson./scan:

 $\sim 100 \text{ fb}^{-1}$

Unique $\Upsilon(5S) \rightarrow Bs\overline{B}s$ data sample at a lepton collider

Worlds largest B meson sample \sim 772 million $B\overline{B}$ events

used in $B \rightarrow D \ell \nu$

$\sim 550 \text{ fb}^{-1}$

On resonance:

 $Y(4S): 433 \text{ fb}^{-1}$

 $Y(3S): 30 \text{ fb}^{-1}$

 $Y(2S): 14 \text{ fb}^{-1}$

Off resonance:

 $\sim 54~\text{fb}^{-1}$

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

The CKM element Vcb

- Inclusive: $B \rightarrow X c l v$
 - (Heavy Quark expansion) $|V_{cb}| = [42.42 \pm 0.86] \times 10^{-3}$
- Exclusive: $B \rightarrow D^{(*)} \ell \nu$
 - $(B \rightarrow D^* \ell \nu, LQCD)$ $|Vcb| = [39.27 \pm 0.75] \times 10^{-3}$
 - $(B \rightarrow D\ell \nu, LQCD)$ $|Vcb| = [40.19 \pm 1.48] \times 10^{-3}$

The CKM element Vcb

- Inclusive: $B \rightarrow X c l v$

• (Heavy Quark expansion)
$$|V_{cb}| = [42.42 \pm 0.86] \times 10^{-3}$$

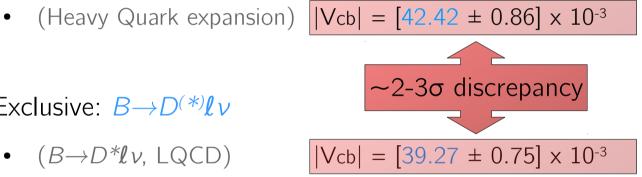
Exclusive: $B \rightarrow D^{(*)} \ell \nu$

• $(B \rightarrow D^* \ell \nu, LQCD)$

• $(B \rightarrow Dl \nu, LQCD)$

$$|Vcb| = [39.27 \pm 0.75] \times 10^{-3}$$

$$|V_{cb}| = [40.19 \pm 1.48] \times 10^{-3}$$



The CKM element Vcb

- Inclusive: $B \rightarrow X c l v$

• Exclusive:
$$B \rightarrow D^{(*)} \ell \nu$$

- $(B \rightarrow D^* \ell \nu, LQCD)$
- $(B \rightarrow Dl \nu, LQCD)$

 $|V_{cb}| = [40.19 \pm 1.48] \times 10^{-3}$ Improve to clarify

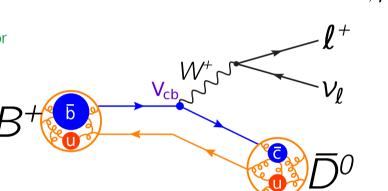
 $\ell = e, \mu$

$B \rightarrow D \ell \nu$

Vcb via differential decay width:

$$\frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \eta_{\rm EW}^2 |V_{\rm cb}|^2 \mathcal{G}(w)^2$$
electroweak correction form factor

- Kinematics: $w = v_B \cdot v_D$
- Measure $\Delta\Gamma/\Delta w$ spectrum and fit V_{cb}
- Form factor G(w):

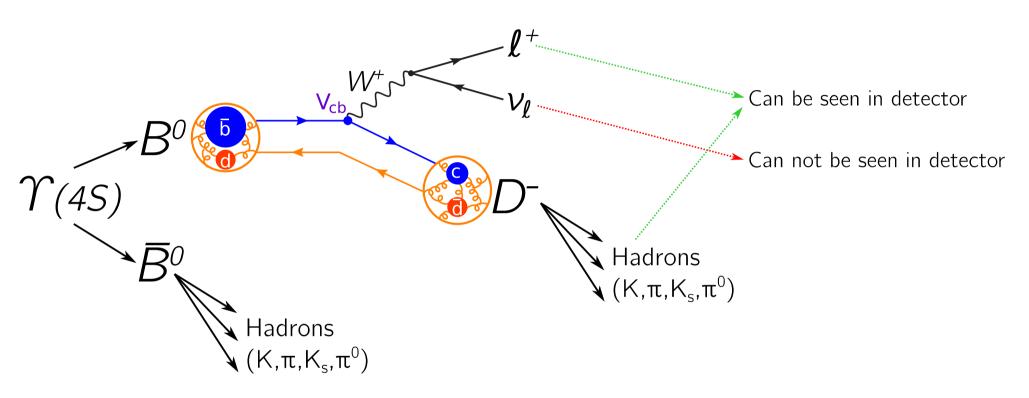


- Which parametrization?
- Until recently: Caprini, Lelouch, Neubert (CLN) parametrization

$$\mathcal{G}(w) = \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3), \qquad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

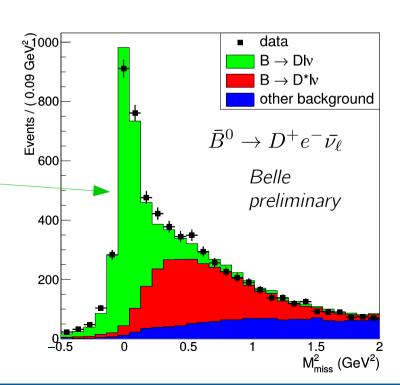
• Meanwhile: e.g. Boyd Grinstein Lebed (BGL) parametrization (less model assumptions)

$$G(w) = \frac{\sqrt{4M_D/M_B}}{1 + M_D/M_B} \quad \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{N} a_{i,n} z^n$$



$B \rightarrow D \ell \nu$: Reconstruction

- $\Upsilon(4S)$ decays into two B mesons
- Reconstruct one of them in a hadronic mode B_{tag} = hadronic tag
- Allows full kinematic reconstruction


$B \rightarrow D \ell \nu$: Reconstruction

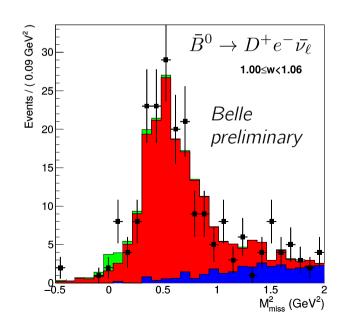
- Tracks and photons from B_{tag} are removed
- Reconstruct *D* in multiple hadronic channels
- Identify the lepton e or μ
- Determine the missing mass²

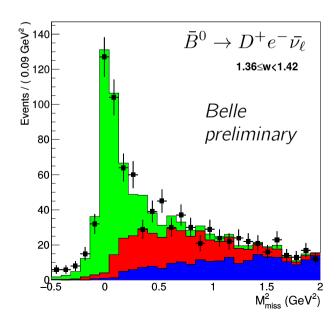
$$M_{miss}^2 = (p_{\text{beam}} - p_{B_{\text{tag}}} - p_D - p_\ell)^2$$

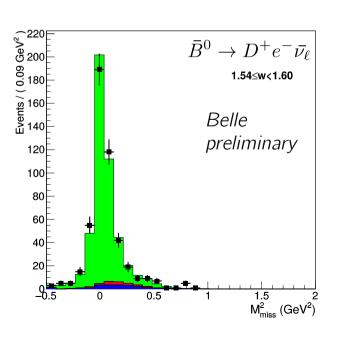
• If only neutrino is missing (*i.e.* genuine reconstruction)

$$M_{miss}^2 = 0$$

$D^+ o K^- \pi^+ \pi^+$
$D^+ \to K^- \pi^+ \pi^+ \pi^0$
$D^+ o K_s^0 \pi^+$
$D^{+} \to K_{s}^{0} \pi^{+} \pi^{0}$
$D^+ \rightarrow K^+ K^- \pi^+$
$D^+ o K_s^0 K^+$
$D^+ \to K_s^0 \pi^+ \pi^+ \pi^-$
$D^+ o \pi^+ \pi^0$
$D^+ \to \pi^+ \pi^+ \pi^-$
$D^+ \to K^- \pi^+ \pi^+ \pi^+ \pi^-$
$D^0 o K^-\pi^+$
$D^0 \to K^-\pi^+\pi^0$
$D^0 \rightarrow K^-\pi^+\pi^+\pi^-$
$D^0 o K_s^0 \pi^+ \pi^-$
$D^0 \to K_s^0 \pi^+ \pi^- \pi^0$
$D^0 ightarrow K_s^0 \pi^0$
$D^0 \to K^+ K^-$
$D^0 \to \pi^+\pi^-$
$D^0 o K^0_s K^0_s$
$D^0 o \pi^0 \pi^0$
$D^0 o K_s^0 \pi^0 \pi^0$
$D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$
$D^0 \to \pi^+ \pi^- \pi^0$

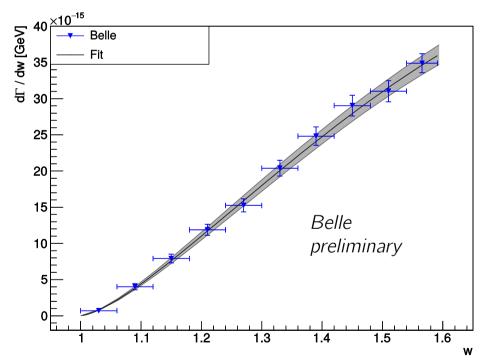


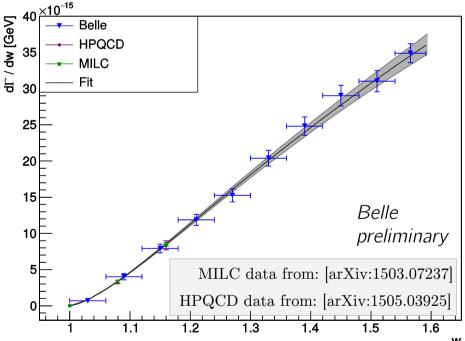




$B \rightarrow D\ell \nu$: Signal yield extraction

- Extract signal yield in 10 different w-bins (from 1.0 to 1.6)
- Use MC distribution as template
 - Floating: signal and B→D*\(\begin{align*} \psi \\ \psi \end{align*} \psi \quad background
 - Fixed to MC: other bg (e.g. fake- and non prompt leptons, D^{**} etc.)
- Determine $\Delta\Gamma/\Delta w$ from the signal yields relative to callibrated MC





$B \rightarrow D\ell \nu$: Vcb Fit

- We extracted $\Delta\Gamma/\Delta w$ in different w bins
- Fit with:
 CLN (two params, heavy quark symmetry) or
 BGL (more params, less constraints)

 $|V_{\rm cb}|\eta_{\rm EW} = (40.93 \pm 1.33) \times 10^{-3}$

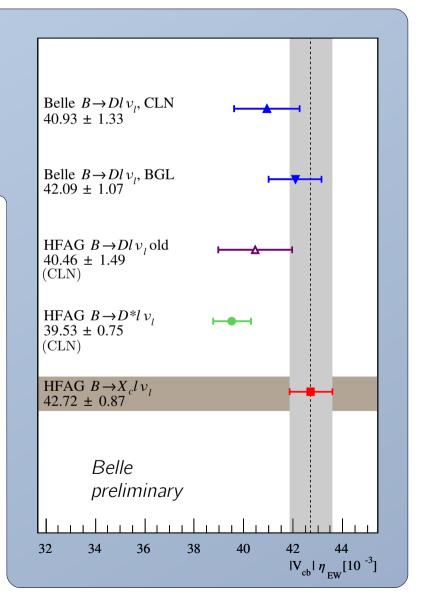
Belle preliminary $|V_{\rm cb}|\eta_{\rm EW} = (42.09 \pm 1.07) \times 10^{-3}$

Using $G(1) = 1.0541 \pm 0.0083$ from MILC [arXiv:1503.07237]

$B \rightarrow D \ell \nu$: results (preliminary)

$$|V_{\rm cb}|\eta_{\rm EW}({\rm CLN}) = (40.93 \pm 1.33) \times 10^{-3}$$

$$|V_{\rm cb}|\eta_{\rm EW}({\rm BGL}) = (42.09 \pm 1.07) \times 10^{-3}$$

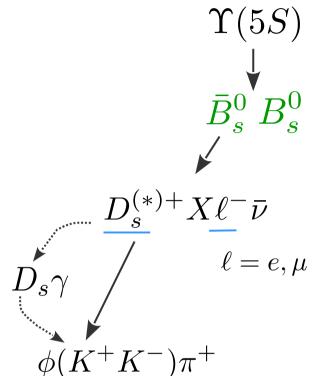

Branching fractions

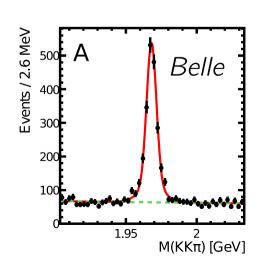
Belle preliminary

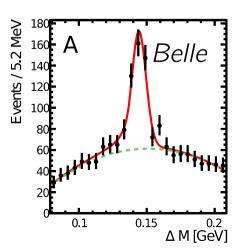
$$\mathcal{B}(B^0 \to D^- \ell^+ \nu_\ell) = (2.35 \pm 0.04 \pm 0.11)\%$$

$$\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu_\ell) = (2.67 \pm 0.04 \pm 0.12)\%$$

$$\mathcal{B}(B \to D \ell \nu_\ell) = (2.43 \pm 0.03 \pm 0.10)\%$$
(stat) (syst)
(in terms of B^0)

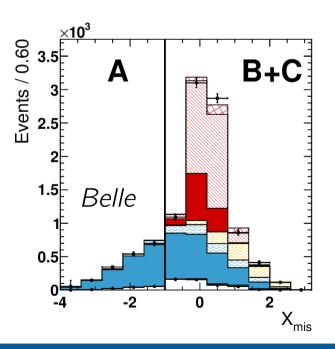


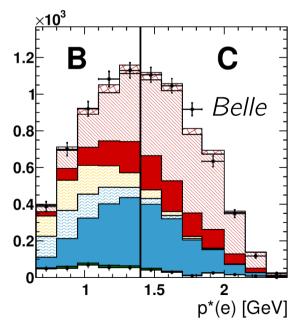


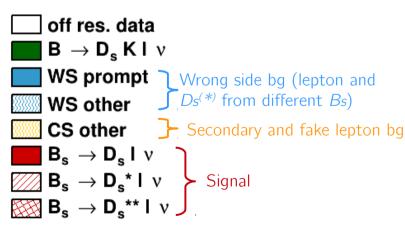

$$B_s \rightarrow D_s(*) \times \ell \nu$$

[arXiv:1504.02004, submitted to PRD]

- X = feed down from higher Ds states
- $Ds \rightarrow \Phi(K^+K^-)\pi$
- $Ds^* \rightarrow Ds\gamma$
- Combine Ds^(*) with lepton of opposite charge
- Determine the number of $D_s(*)$:
 - Ds: fit $m(KK\pi)$
 - Ds^* : fit $\Delta m = m(KK\pi\gamma)-m(KK\pi)$




$Bs \rightarrow Ds^{(*)}X \ell \nu$ signal yield extraction


• Determine number of genuine $Bs \rightarrow Ds(*)X \ell \nu$ events with X_{mis} distribution

$$X_{\text{mis}} = \frac{E_{B_s}^* - (E_{D_s\ell}^* + p_{D_s\ell}^*)}{\sqrt{s/4 - m_{B_s}^2}}$$

- $E_{\rm Bs}$ *: Bs energy in CM system (approx. by $\sqrt{s}/2$)
- E_{Dsl}^{*} and p_{Dsl}^{*} : reconstructed energy and momentum
- Use 3 counting regions A,B and C:

Plots show only Ds and electron reconstruction – For Ds^* and muon see paper

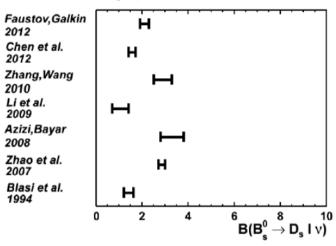
$Bs \rightarrow Ds^{(*)}X \ell \nu$ signal yield extraction

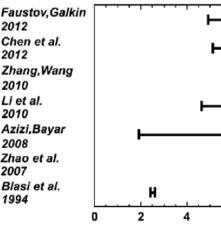
- 3 components:
 - Wrong side (lepton and $Ds^{(*)}$ from different Bs)
 - Secondary and fake leptons
 - Signal
- Each region enhances one component
- 3 unknowns and 3 equations \rightarrow solve to know N_{signal}
- Knowing number of Bs mesons, BRs of $Ds^{(*)}$ and efficiencies we get $\mathcal{B}(B_s \to D_s^{(*)} X \ell \nu)$
- Or: If we can estimate $\mathcal{B}(B_s \to D_s X \ell \nu)$ we can calculate the number of B_s mesons very useful for many $\Upsilon(5S)$ analyses
 - Start from $Bs \rightarrow Xcl v$: can be inferred from $B^0 \rightarrow Xcl v$ (correct for small differences in semileptonic widths and lifetimes)
 - Remove all states without Ds: Ds_1 , Ds_2 * decay into $D^{(*)}$
 - $\mathcal{B}_{\text{est}}(B_s \to D_s X \ell \nu) = \mathcal{B}(B_s \to X_c \ell \nu) \mathcal{B}(B_s \to D_s X \ell \nu) = (8.6 \pm 0.5)\%$

$B_s \rightarrow D_s(*)X \ell \nu$: results

$$\mathcal{B}(D_s X e \nu) = [8.1 \pm 0.3(\text{stat}) \pm 0.6(\text{syst}) \pm 1.4(\text{ext})]\%$$

 $\mathcal{B}(D_s X \mu \nu) = [8.3 \pm 0.3(\text{stat}) \pm 0.6(\text{syst}) \pm 1.5(\text{ext})]\%$
 $\mathcal{B}(D_s^* X e \nu) = [5.2 \pm 0.6(\text{stat}) \pm 0.4(\text{syst}) \pm 0.9(\text{ext})]\%$
 $\mathcal{B}(D_s^* X \mu \nu) = [5.7 \pm 0.6(\text{stat}) \pm 0.4(\text{syst}) \pm 1.0(\text{ext})]\%$


Combined:


$$\mathcal{B}(D_s X \ell \nu) = [8.2 \pm 0.2(\text{stat}) \pm 0.6(\text{syst}) \pm 1.4(\text{ext})]\%$$

 $\mathcal{B}(D_s^* X \ell \nu) = [5.4 \pm 0.4(\text{stat}) \pm 0.4(\text{syst}) \pm 0.9(\text{ext})]\%$

Theory predictions don't include "X"
 →should be lower than our results

Number of Bs pairs at $\Upsilon(5S)$ at Belle $N_{B_s\bar{B}_s} = [6.93 \pm 0.18(\mathrm{stat}) \pm 0.52(\mathrm{syst}) \pm 0.51(\mathrm{ext})] \times 10^6$

Theory predictions:

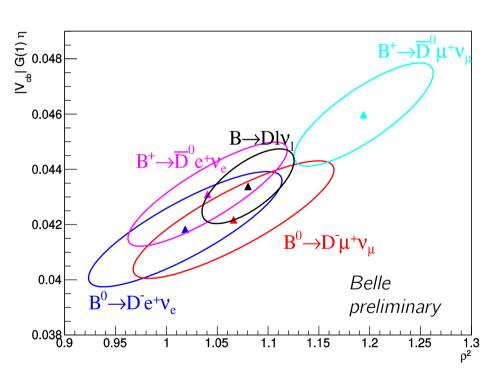
 $\begin{matrix} \mathbf{6} & \mathbf{8} & \mathbf{10} \\ \mathbf{B}(\mathbf{B_e^0} \rightarrow \mathbf{D_s^*} \, \mathbf{Iv}) \end{matrix}$

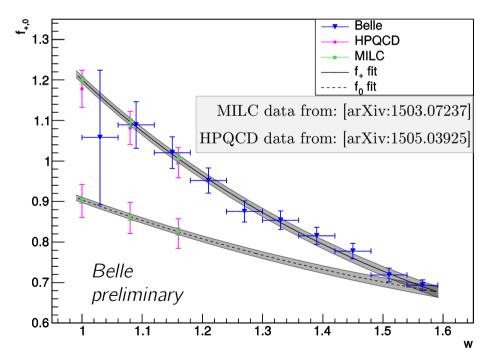
Summary

- $B \rightarrow D \ell \nu$
 - Full reconstruction of events using hadronic tag
 - Fit differential decay width
 - $|V_{cb}|\eta_{EW}(CLN) = (40.93 \pm 1.33) \times 10^{-3}$ $|V_{cb}|\eta_{EW}(BGL) = (42.09 \pm 1.07) \times 10^{-3}$
 - Inclusive Exclusive Discrepancy not confirmed
- $B_S \rightarrow D_S(*) \times \ell \nu$
 - Use decays $Ds^* \rightarrow Ds\gamma$ and $Ds \rightarrow \Phi(KK)\pi$
 - Determine number of $Ds^{(*)}$ with fits to $m(KK\pi)$ and Δm
 - Using 3 counting regions enhancing different yields
 - $\mathcal{B}(D_s X \ell \nu) = [8.2 \pm 0.2(\text{stat}) \pm 0.6(\text{syst}) \pm 1.4(\text{ext})]\%$ $\mathcal{B}(D_s^* X \ell \nu) = [5.4 \pm 0.4(\text{stat}) \pm 0.4(\text{syst}) \pm 0.9(\text{ext})]\%$ $N_{B_s \bar{B}_s} = [6.93 \pm 0.18(\text{stat}) \pm 0.52(\text{syst}) \pm 0.51(\text{ext})] \times 10^6$

Thank you!

Back Up




$B \rightarrow D\ell \nu$: Vcb Fit

- Additional plots
- CLN (two params, heavy quark symmetry) Lepton – and B^+/B^0 separated fit results:

BGL (more params, less constraints) Form factors f_+ , f_0

 $|\mathsf{Vcb}|\mathsf{G}(1)\eta_{\mathsf{EW}}$ and ρ^2 are the two free parameters of the fit

Relation between f_{+} and G(w):

$$f_{+}(w)^{2} = \frac{(1 + M_{D}/M_{B})^{2}}{4M_{D}/M_{B}}\mathcal{G}(w)^{2}$$

$B \rightarrow D \ell \nu$: systematic errors

	$\sigma \left(\Delta \Gamma_i / \Delta w\right) [\%]$									
	0	1	2	3	4	$\frac{-\omega}{5}$	6	7	8	9
Tag Correction	3.08	3.26	3.31	3.35	3.36	3.35	3.41	3.25	3.30	3.16
Charged tracks	1.78	1.65	1.62	1.61	1.66	1.65	1.65	1.65	1.65	1.69
$\mathcal{B}(D \to \text{hadronic})$	0.71	0.60	0.57	0.54	0.61	0.55	0.54	0.52	0.51	0.50
$\mathcal{B}(B \to D^{*(*)}\ell\nu)$	1.45	0.91	0.90	0.97	0.84	0.77	0.56	0.26	0.13	0.44
$\mathcal{B}(B \to X_u \ell \nu)$	0.48	0.09	0.04	0.06	0.04	0.03	0.03	0.03	0.03	0.01
$FF(B \to D^* \ell \nu)$	0.58	0.25	0.16	0.23	0.20	0.09	0.10	0.09	0.09	0.23
$FF(B \to D^{**}\ell\nu)$	1.98	1.17	0.81	0.70	0.49	0.56	0.70	0.53	0.10	0.30
Lifetimes	0.30	0.20	0.18	0.19	0.19	0.19	0.18	0.18	0.19	0.18
π^0 efficiency	0.64	0.62	0.71	0.64	0.64	0.67	0.66	0.72	0.72	0.76
K/π efficiency	1.27	0.88	0.89	0.92	0.98	0.96	0.95	0.94	0.97	0.96
K_s efficiency	0.45	0.19	0.22	0.21	0.22	0.21	0.20	0.21	0.21	0.21
Luminosity	1.59	1.40	1.39	1.38	1.44	1.40	1.39	1.36	1.44	1.39
All	5.14	4.50	4.35	4.41	4.27	4.22	4.22	4.19	4.08	3.79

$B \rightarrow D \ell \nu$: Comparison of different BGL set-ups

Using different lattice data

Lattice data	$\eta_{\rm EW} V_{cb} [10^{-3}]$	χ^2/df	p
MILC [12]	41.77 ± 1.20	7.32/10	0.69
HPQCD [27]	42.10 ± 1.89	5.92/8	0.66
MILC & HPQCD [12, 27]	42.09 ± 1.07	12.93/16	0.68


Using different series truncations N

= default

[12] = [arXiv:1503.07237]

[27] = [arXiv:1505.03925]

	N = 2	N=3	N = 4
$a_{+,0}$	0.0127 ± 0.0001	0.0126 ± 0.0001	0.0126 ± 0.0001
$a_{+,1}$	-0.091 ± 0.002	-0.094 ± 0.003	-0.094 ± 0.003
$a_{+,2}$	0.34 ± 0.03	0.34 ± 0.04	0.34 ± 0.04
$a_{+,3}$	_	-0.1 ± 0.6	-0.1 ± 0.6
$a_{+,4}$	_	_	-0.0 ± 1.0
$a_{0,0}$	0.0115 ± 0.0001	0.0114 ± 0.0001	0.0114 ± 0.0001
$a_{0,1}$	-0.058 ± 0.002	-0.057 ± 0.002	-0.057 ± 0.002
$a_{0,2}$	0.23 ± 0.02	0.12 ± 0.04	0.12 ± 0.04
$a_{0,3}$	_	0.4 ± 0.6	0.4 ± 0.6
$a_{0,4}$	_	_	0.0 ± 1.0
$\overline{\eta_{\mathrm{EW}} V_{cb} }$	40.63 ± 0.98	42.09 ± 1.07	42.09 ± 1.07
χ^2/df	30.3/16	12.9/16	12.9/16
p	0.016	0.678	0.678

 $Bs \rightarrow Ds^{(*)}X \ell \nu$ systematic errors [%]

	$D_s X e \nu$	$D_s X \mu \nu$	$D_s^* X e \nu$	$D_s^* X \mu \nu$			
Detector							
Tracking efficiency	1.4	1.4	1.4	1.4			
Photon efficiency			2.0	2.0			
Kaon and pion ID	1.4	1.4	1.4	1.4			
Lepton efficiency	1.0	1.6	1.0	1.6			
Hadron misidentification	0.1	1.3	0.1	1.9			
Signal and background modeling							
PDF for $M_{KK\pi}$ and ΔM fits	3.0	3.0	5.0	5.0			
Continuum shape	1.2	0.3	1.2	0.3			
$B \to D_s^{(*)} K \ell \nu \text{ modeling}$	0.3	0.3	0.1	0.1			
Signal							
Composition	4.8	4.8	0.3	< 0.1			
Form factors	0.9	1.0	1.0	1.0			
Efficiency	3.1	3.1	3.0	3.0			
$Wrong ext{-}side$							
Composition	1.6	2.2	1.0	2.5			
B_s fraction	0.2	0.2	< 0.1	< 0.1			
Shape	1.0	1.0	1.0	1.0			
Other							
Composition and shape	0.3	0.3	0.4	0.7			
B_s production mode	0.1	0.1	0.3	0.3			
Beam energy	1.0	1.0	0.5	0.5			
Total	7.3	7.6	6.9	7.6			