Subleading P-wave, Higgs and nonresonant contributions to top-pair production near threshold

Thomas Rauh

Technische Universität München Physik Department

based on work in collaboration with M. Beneke, A. Maier and J. Piclum

European Physical Society Conference on High Energy Physics July 24, 2015

Motivation

Motivation for studying $e^+e^- \rightarrow t\bar{t}$ near threshold:

- Threshold scan at future linear collider
 - Ultra-precise measurement of top quark mass: $\delta m_t^{\overline{\text{MS}}} \sim \mathcal{O}(50 \text{ MeV})$
 - High sensitivity to top width and αs
 - Possibility to measure top Yukawa coupling
- Technically very interesting computation

Introduction	QCD cross section	Subleading contributions	Phenomenology	Summary
Introductio	n			
Near three	eshold tops are nonrel	ativistic with velocity $m{v}\sim lpha_{f s}$		

• Multiple scales are relevant:

hard scale	m_t	mass
soft scale	<i>m</i> _t <i>v</i>	momentum
ultrasoft scale	$m_t v^2$	energy

Introduction	QCD cross section	Subleading contributions	Phenomenology	Summary
Introductior	1			
Near three	shold tops are nonrel	ativistic with velocity $v\sim lpha_{ m s}$		

• Multiple scales are relevant:

hard scale	m_t	mass
soft scale	$m_t v$	momentum
ultrasoft scale	$m_t v^2$	energy

- Conventional perturbation theory in α_s fails
- Coulomb singularities $(\alpha_s/v)^n$ from *n* exchanges of potential gluons $(k^0, \mathbf{k}) \sim (m_t v^2, m_t v)$ have to be summed to all orders

• This resummation can be organized systematically using nonrelativistic effective theories, see review [Beneke, Kiyo, Schuller: 1312.4791]

► Normalized cross section
$$R(s) = \frac{\sigma(e^+e^- \to t\bar{t}X)}{\sigma_0(e^+e^- \to \mu^+\mu^-)} = 12\pi e_t^2 f(s) \text{ Im } [\Pi^{(v)}(s)]$$

► Normalized cross section
$$R(s) = \frac{\sigma(e^+e^- \to t\bar{t}X)}{\sigma_0(e^+e^- \to \mu^+\mu^-)} = 12\pi e_t^2 f(s) \text{ Im } [\Pi^{(v)}(s)]$$

Resummed cross section at LO:

► Normalized cross section
$$R(s) = \frac{\sigma(e^+e^- \to t\bar{t}X)}{\sigma_0(e^+e^- \to \mu^+\mu^-)} = 12\pi e_t^2 f(s) \operatorname{Im} \left[\Pi^{(v)}(s)\right]$$

Resummed cross section at LO:

 $\Gamma_t \neq 0$

► Normalized cross section
$$R(s) = \frac{\sigma(e^+e^- \to t\bar{t}X)}{\sigma_0(e^+e^- \to \mu^+\mu^-)} = 12\pi e_t^2 f(s) \operatorname{Im}\left[\Pi^{(v)}(s)\right]$$

Resummed cross section at NNNLO:

Full third order in QCD

NNNLO QCD result completed this year (NNLO from late 90's)

Inputs:

$$m_t^{PS}(\mu_f = 20 \text{ GeV}) = 171.5 \text{ GeV}$$

 $\Gamma_t = 1.33 \text{ GeV}$
 $\alpha_s(m_Z) = 0.1185$
 $\alpha(m_Z) = 1/128.944$
 $\sin^2 \theta_w = 0.223$

Scale variation: $\mu \in [50 \text{ GeV}, 350 \text{ GeV}]$ with $\mu^{\text{cent}} = 80 \text{ GeV}$

Plot from [Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser: 1506.06864] NNNLO ingredients: [Anzai, Beneke, Kiyo, Kniehl, Marquard, Penin, Piclum, Schuller, Seidel, Smirnov, Smirnov, Steinhauser, Sumino, Wüster]

NNLL results [Pineda, Signer; Hoang, Stahlhofen]

- P-wave contribution to the cross section starting at NNLO
 - Top pair is produced dominantly in an S wave, since produced by vector current
 - Axial-vector coupling from Z boson yields different production operator \rightarrow P wave
 - Operator contains top momentum \rightarrow suppressed by $v \sim \alpha_s \rightarrow$ NNLO effect

- NNNLO correction computed in [Beneke, Piclum, TR: 1312.4792]
- Older results exist [Penin, Pivovarov], but are not in dimensional regularization, which is required for a consistent combination with nonresonant effects

- Higgs exchange leads to two modifications
 - Matching coefficients of the vector current [Eiras, Steinhauser]
 - Additional local (not Yukawa) potential for $m_H \sim m_t$

$$\frac{1}{\mathbf{q}^2 + m_H^2} \sim \frac{1}{m_H^2} + \mathcal{O}\left(\frac{\mathbf{q}^2}{m_H^2} \sim \mathbf{v}^2\right) \quad \stackrel{\mathrm{FT}}{\longrightarrow} \quad \frac{\delta^{(3)}(\mathbf{r})}{m_H^2}$$

Higgs effects up to NNNLO included in [Beneke, Maier, Piclum, TR: 1506.06865]

- ► Higgs exchange leads to two modifications
 - Matching coefficients of the vector current [Eiras, Steinhauser]
 - Additional local (not Yukawa) potential for $m_H \sim m_t$

$$\frac{1}{\mathbf{q}^2 + m_H^2} \sim \frac{1}{m_H^2} + \mathcal{O}\left(\frac{\mathbf{q}^2}{m_H^2} \sim \mathbf{v}^2\right) \quad \xrightarrow{\mathrm{FT}} \quad \frac{\delta^{(3)}(\mathbf{r})}{m_H^2}$$

• Higgs effects up to NNNLO included in [Beneke, Maier, Piclum, TR: 1506.06865]

- Leading QED effect is QED Coulomb potential (NLO)
 - Included up to NNNLO
 - But only complete at NLO, further resonant electroweak effects arise at NNLO [Grzadkowski, Kühn, Krawczyk, Stuart; Guth, Kühn; Hoang, Reißer], but are not included yet

- ▶ Due to top instability the physical final state is $W^+W^-b\bar{b}$
 - Dominantly produced through resonant (i.e. on-shell) top pair
 - At higher orders: Production with just one or no resonant top
 - Both contributions are separately divergent, only the sum is physical
 - Contributions can be organized systematically within Unstable Particle Effective Theory [Beneke, Chapovsky, Signer, Zanderighi]
 - Known at NLO [Beneke, Jantzen, Ruiz-Femenía]

• Partial results at NNLO [Penin, Piclum; Jantzen, Ruiz-Femenía] not yet included

Introduction	QCD cross section	Subleading contributions	Phenomenology	Summary
P wave con	tribution			

- \blacktriangleright P wave gives a small effect $\lesssim 1\%$
- Complete NNNLO QCD result (incl. NLO P wave) will be used as reference prediction for the study of subleading effects in the following

Figure from [Beneke, Piclum, TR: 1312.4792]

Introduction				
Incouction				•
	 IUU	uc	.101	

QCD cross section

Subleading contributions

Phenomenology

Summary

Subleading effects

- Relative size of Higgs, QED and nonresonant contributions (down)
- Impact on the cross section (right)
- Effects significantly larger than QCD uncertainty, particularly in the important region at and below threshold

Thomas Rauh Top-pair production near threshold

Introduction	QCD cross section	Subleading contributions	Phenomenology	Summary
Paramete	er dependence			
► The reg	gion at and below the pe	ak is very sensitive to variat	ions of m_t and Γ_t	

- Increase (decrease) of m_t shifts the peak to the right (left)
- Increase (decrease) of Γ_t makes the peak less (more) pronounced
- Allows ultra-precise measurements in theoretically well-defined mass schemes (unlike reconstructions of the top mass at LHC)

Yukawa coupling dependence

- ► Assume that some new physics modify the SM Yukawa coupling, parametrization through $y_t = \kappa_t \frac{\sqrt{2}m_t}{v}$
 - Changes normalization of cross section
 - Variation of α_s has a similar effect
 - Degeneracy possibly restricts measurement of y_t , but α_s should be known sufficiently well by the time a measurement is possible

Reliable estimate on achievable uncertainties requires experimental study

Several analyses have been performed

	MM	SSTP (stat.)	HISFSKY (stat.)
δm_t [MeV]	20	27	16
$\delta \Gamma_t$ [MeV]	30	-	21
$\delta \alpha_s$	0.0012	0.0008	-
δ y t [%]	35	-	4.2

[Martinez, Miquel; Seidel, Simon, Tesar, Poss; Horiguchi, Ishikawa, Suehara, Fujii, Sumino, Kiyo, Yamamoto]

 \longrightarrow See talk by Roman Poeschl tomorrow at 12:10 !

► However: Analysis using full available theory prediction not available yet

- ightarrow Strong dynamics in $e^+e^-
 ightarrow t ar{t} X$ near threshold are under control at the level of $\sim \pm 3\%$
- > Non-QCD effects are important and must be included, the first steps are completed
- ► Threshold scan at a future linear collider will give an ultra-precise measurement of m_t and Γ_t and be sensitive to α_s and y_t
- Experimental studies will give a clear picture of what to expect, from the theory point of view things look very promising (with maybe a grain of salt for y_t)
- Still many things to do, complete knowledge of non-QCD effects at NNLO desirable
 - Complete nonresonant and electroweak effects at NNLO
 - Initial state radiation
 - NNNLO+NNLL

Backup: Scale variation

 \blacktriangleright No sign of convergence below \sim 50 GeV

Backup: Peak and maximal slope

Backup: Effective field theory setup

Use EFTs that subsequently integrate out the hard and soft scale

QCD	Full theory
Ļ	Integrated out hard modes $k \sim m_t$ Hard subgraphs become point-like vertices
NRQCD	Contains nonrelativistic modes
Ļ	Integrated out soft modes $k \sim m_t v$ Soft subgraphs become non-local vertices
PNRQCD	Contains potential heavy quarks and ultrasoft gluons

PNRQCD [Pineda, Soto] is a spatially non-local theory, where the LO Coulomb potential is part of the LO Lagrangian. The heavy-quark pair propagator in PNRQCD is given by the sum of ladder diagrams involving arbitrary numbers of potential gluon exchanges. Higher corrections follow from Rayleigh-Schrödinger perturbation theory.

000000	000000		000000	
00	000	000	000	

▶ For a detailed account of the EFT setup see [Beneke, Kiyo, Schuller: 1312.4791]