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� The energy-momentum tensor is a fundamental quantity for a Quantum Field 
Theory: it contains the currents of Poincare’ symmetry and of dilatations. 

� For SU(N) Yang-Mills theory in the continuum in D dimensions it is given by 
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� The energy-momentum tensor is a physical quantity: directly related to 
thermodynamics quantities like pressure, entropy and energy density. 

Introduction 



� Lattice: preferred framework for non-perturbative study from first principles 

Explicit breaking of space-time symmetries that must be recovered in the 
continuum limit; troubles with the energy-momentum tensor  

�        on the lattice must generate the correct conserved currents in the cont. limit  Tµ⌫

� The renormalized energy-momentum tensor correctly generates translations 
and the trace anomaly. It can be written as 

�        has dimension 4; on the lattice SO(4) breaks to SW4, mixing with  Tµ⌫
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where ZT, zT and zS are renormalizations constants and depend only on g0
2. 

Only a perturbative method to compute them; calculated at 1 loop. 
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The energy-momentum tensor on the lattice 



A moving frame in Euclidean space: the shift 

i.e. the temperature of the system is given by T =
1

L0

p
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By applying the machinery of quantum fields, one produces new Ward Identities 
generated by Lorentz invariance. Particularly interesting ones are 
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Implement translations in Euclidean space by setting a thermal quantum field 
theory in a moving reference frame.  

The Lorentz invariance implies that the free-energy is given by 
  

L. Giusti and H. Meyer, 
PRL 2011, JHEP 2011 and 2013 

That corresponds to introducing a shift    when closing the 
periodic boundary conditions along the temporal direction: 
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Non-perturbative method to calculate the renormalization constants 
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The calculation of ZT(g0
2) 

The renormalization constant of the off-diagonal components can be obtained from  

We need to measure            and the ratio         at fixed value of the bare coupling g0. 
Then, by taking the limits                  and                   , we can calculate ZT. 
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The calculation of ZT(g0
2) 
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The accuracy is about 0.5% or smaller 
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The calculation of zT(g0
2) 
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We need to measure           ,          and            at fixed value of the bare coupling g0 
in a single Monte Carlo simulation. 
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work in progress 
(simple measurement 
of the trace anomaly) 



A physical application: the calculation of Equation of State 
The energy-momentum tensor is a physical operator and it is related to the 
thermodynamic properties of a thermal quantum field theory.  

The entropy density s can be obtained as follows 
s
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The Equation of State 
We compare our preliminary results in the range 1-8 Tc with the data available in 
the literature 

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 1  2  3  4  5  6  7  8

s/T3

T/Tc

G. Boyd et al., Nucl.Phys. B469 (1996) 419
S. Borsanyi et al., JHEP 1207 (2012) 056

L. Giusti and M. Pepe, in preparation

 3.5

 4

 4.5

 5

 5.5

 1  1.2  1.4  1.6  1.8  2

Numerical simulations are in progress to reach temperatures about 250 Tc. These runs 
are not computationally demanding and they will be over in a few months. 



Conclusions 

�  The renormalization factor ZT of the space-time components of the energy- 
momentum tensor provide a new method to compute the Equation of State of SU(3).  

� The non-perturbative renormalization of the energy-momentum tensor on the lattice 
has been computed in the range [0,1] for the bare coupling g0

2. 

� Measurements of ZT and zT with an accuracy of about 0.5% or smaller have been 
shown.  

� An equation for the renormalization of the trace anomaly is shown and the 
calculation of zS is in progress. 

•  Our preliminary results are not in agreement with data in the literature.  
The discrepancy with the data by Borsanyi et al. below 2 Tc is significative, 
especially around 1.1-1.2 Tc where it is above 5σ.  Our data are systematically above.  


