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Introduction

* The energy-momentum tensor is a fundamental quantity for a Quantum Field
Theory: it contains the currents of Poincare’ symmetry and of dilatations.

* For SU(N) Yang-Mills theory in the continuum 1n D dimensions it is given by
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e T,, is multiplicatively renormalizable and properly generates translations by
Ward Identities
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* The energy-momentum tensor is a physical quantity: directly related to
thermodynamics quantities like pressure, entropy and energy density.
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The energy-momentum tensor on the lattice Ann. Phys. 197 (1990) 119
* Lattice: preferred framework for non-perturbative study from first principles
Explicit breaking of space-time symmetries that must be recovered in the
continuum limit; troubles with the energy-momentum tensor

* 1, on the lattice must generate the correct conserved currents in the cont. limit
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* The renormalized energy-momentum tensor correctly generates translations
and the trace anomaly. It can be written as

T = Zr {T,,[Lly] + 2p T + 25[T) — <TE/]>0]}

where Z, z; and z are renormalizations constants and depend only on g,>.

Only a perturbative method to compute them; calculated at 1 loop.
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A moving frame 1n Euclidean space: the shift rre2om suer2o1anazons

Implement translations in Euclidean space by setting a thermal quantum field

theory in a moving reference frame.
Z(Lo,€) = Tr e~ LolH=6Ton) |

That corresponds to introducing a shift & when closing the
periodic boundary conditions along the temporal direction:
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The Lorentz invariance implies that the free-energy is given by
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1.e. the temperature of the system is given by Lov/is e

By applying the machinery of quantum fields, one produces new Ward Identities
generated by Lorentz invariance. Particularly interesting ones are
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Non-perturbative method to calculate the renormalization constants



The calculation of Z(g,?)

The renormalization constant of the off-diagonal components can be obtained from
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The calculation of Z(g,?)
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The accuracy is about 0.5% or smaller



The calculation of z(g,?)
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We need to measure (Tox)¢ , (Too)e and (Tix)e at fixed value of the bare coupling g,

in a single Monte Carlo simulation.
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The calculation of zg(g,?)
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A physical application: the calculation of Equation of State

The energy-momentum tensor is a physical operator and it 1s related to the
thermodynamic properties of a thermal quantum field theory.

The entropy density s can be obtained as follows
. L4(1 + £2)3 L, lattice size in the

T3 — o (Tow)e 2t temporal direction
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The Equation of State

We compare our preliminary results in the range 1-8 T, with the data available in
the literature
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Numerical simulations are in progress to reach temperatures about 250 T.. These runs
are not computationally demanding and they will be over in a few months.



Conclusions

* The non-perturbative renormalization of the energy-momentum tensor on the lattice
has been computed in the range [0,1] for the bare coupling g,’.

* Measurements of Zand z; with an accuracy of about 0.5% or smaller have been
shown.

* An equation for the renormalization of the trace anomaly is shown and the
calculation of zg 1s in progress.

* The renormalization factor Z of the space-time components of the energy-
momentum tensor provide a new method to compute the Equation of State of SU(3).

*  QOur preliminary results are not in agreement with data in the literature.
The discrepancy with the data by Borsanyi et al. below 2 T 1s significative,
especially around 1.1-1.2 T, where it 1s above 56. Our data are systematically above.



